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abstract

ActuarAI: Machine Learning Models for Patient Disease Forecasting and Representation

David Spencer Kartchner
Department of Mathematics, BYU

Master of Science

Many strategies exist for representing patients and their medical histories contained in
electronic health records (EHRs). These records tell a story of a patient’s medical state
across time. Accordingly, many have sought to mathematically capture that story by rep-
resenting diseases, patient visits, and even a patient’s internal health state in interpretive
and predictive ways. This is particularly useful when we can encode a patient’s medical
state in such a way that it can predict his or her medical future of an individual, as this
could allow high-impact health problems to be avoided or at least diagnosed in earlier states,
thus mitigating many of the adverse effects. This thesis contributes to the current disease
prediction literature in two main ways:

• We present a unified, representative review of methods for representing diseases, visits,
and patients, along with published metrics for measuring their success. We discuss
these in the context of natural language processing (NLP), from which many of these
algorithms were adapted.

• We discuss other machine learning approaches to disease prediction that seem to have
been disregarded in recent literature and demonstrate that simple models such as
gradient boosted trees can outperform even advanced disease prediction deep learning
models without needing to pre-learn disease representations.
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Chapter 1. Introduction: Predictive Mod-

eling with Insurance Claims Data

Healthcare outcomes have a dramatic impact on the physical, social, and economic well-being

of a society. Healthcare costs in the United States are currently at record highs and constitute

more than 17% of national expenditures. U.S. healthcare spending as a percentage of gross

domestic product (GDP) is approximately double that of other Organization for Economic

Cooperation and Development (OEDC) member countries and has consistently grown faster

than U.S. GDP over the past 60 years [4].

The burden of healthcare costs becomes more dramatic when one recognizes that these

costs rest upon the shoulders of a small number of individuals. According to a 2015 study by

the U.S. Government Accountability Office, nearly 50% of the U.S. healthcare expenditures

come from the top 5% of patients[5]. Minorities and those who are economically or educa-

tionally disadvantaged are at disproportionate risk for developing chronic health problems

[6, 7].

The majority of healthcare costs revolve around chronic diseases. In a 2014 study, the

Agency for Healthcare Research and Quality (AHRQ) found that chronic conditions account

for 86% of U.S. healthcare expenditures. Moreover, chronic diseases account for seven of

the top 10 causes of death in the United States with the top two, heart disease and cancer,

accounting for 46% by themselves [8]. A 2012 study found that 117 million - about half -

of US adults live with one or more chronic conditions [9]. The risk and severity of these

conditions further increases with age. Accordingly, various individuals have called for per-

sonalized efforts to preemptively identify and prevent chronic conditions [10, 11], assuming

that such would reduce the suffering for individuals while reducing cost and uncertainty for

providers. We discuss different types of data underlying healthcare AI research, some of the

key problems in healthcare , and examples of current related research.
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1.1 Medical Data

1.1.1 Medical Images.

Diagnostic Scans. Many medical screening and diagnostic procedures produce images.

X-rays, ultrasounds, MRIs, CAT scans, PET scans, and blood tests all produce images which

usually require expert analysis to interpret. A number of recent initiatives have focused on

using medial imaging in conjunction with machine learning to improve diagnosis of many

diseases, including skin cancer [12], lung cancer [13], Alzheimer’s disease [14], malaria [15],

and Parkinson’s disease [16].

Microscopy Images. Many diseases originate at the cellular level and are related to

genetic defects of malfunctions. Cancer, for instance, is strongly linked to failure of signaling

for apoptosis [17], which leads to the accumulation of genetic defects and increased replication

of defected cells, ultimately leading to tumor development. Malaria is caused by a parasite

infiltrating host cells and using them to both reproduce and hide from the immune system.

Viruses similarly infiltrate cells, taking over cellular machinery to block the expression of

host genes and substitute their own DNA to proliferate. Finally, a wide variety of rare

genetic diseases are associated with particular genetic mutations, including cystic fibrosis,

sickle cell disease, muscular dystrophy, and Huntington disease.

Since so many diseases occur at an intracellular level, a number of companies and research

initiatives are focused on obtaining a visual understanding of biology at a cellular level.

Such initiatives include identifying and segmenting individual pieces of cellular machinery

(e.g. nuclei or mitochondria [18, 19]) in molecular images, identifying disease phenotypes

from medical images, and predicting drug-induced gene expression from previously imaged

cells [20]. Such procedures rely on cell imaging, which involves staining portions of cells via

dyes that bind to particular proteins, thus identifying cell walls, mitochondria, ribosomes,

and other sub-cellular entities [21]. Cellular imaging has also shown potential to drastically

improve the performance of drug hit prediction, thus substantially reducing time and cost

of developing new medications.
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1.1.2 Insurance Data. As almost all medical care in the developed world is paid for at

least in part by a third party payer, insurance companies hold vast amounts of summary data

on individuals primarily in the form of insurance claims. Each claim contains a wide range

of variables about an individual health care encounter. Since this work focuses primarily on

prediction of cost and disease onset from claims data, we discuss each of these variables in

turn:

Diagnosis and Procedure Codes. Medical problems and actions taken to treat those

problems are identified using taxonomies of codes. In the United States, diagnosis codes

usually come from the International Classification of Diseases, 9th Revision (ICD-9), [22] or

10th Revision (ICD-10) [23]. These differ primarily in that ICD-10 represents diseases at a

more granular level with more possibilities to detail related comorbidities and specific disease

circumstances. ICD-10 contains over 70,000 different diagnoses, including a few humorous

examples such as:

• W22.02: Walked into lamppost

• Z63.1: Problems in relationship with in-laws

• W61.43: Pecked by a turkey

• V97.33XD: Sucked into jet engine, subsequent encounter

As the name suggests, procedure codes constitute medical action taken during an en-

counter. On a given claim, diagnoses given provide medical justification for particular pro-

cedures, each of which is billable. These procedures could range from an ultrasound or office

examination to a surgery or organ transplant. Procedures are usually coded under a taxon-

omy corresponding to ICD-9 or ICD-10, or according to the Current Procedural Terminology

(CPT) taxonomy developed by the American Medical Association.

Drug Codes. Drug codes identify prescriptions filled by individuals and generally en-

capsulate drug type, function, dosage, number of doses, and form of delivery (e.g. capsule,
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injection, patch, etc). National Drug Codes (NDCs) also contain information about which

pharmaceutical firm manufactured a particular drug. Other types of drug coding systems in-

clude Generic Product Identifiers (GPIs) and the WHO’s Anatomical Therapeutic Chemical

(ATC) Classification System.

Other Claims Variables. In addition to codes describing the type of care administered,

insurance claims also contain information on billed cost of each procedure (these costs are

usually standardized), information regarding the facility at which the visit took place, and

whether care occurred in an emergency department (ED), inpatient, outpatient, or clinical

setting. These variables can be pertinent to tasks such as individualized risk adjustment and

assessing the extent to which individuals are seeking preventative care (based on whether

their encounters occur in primarily inpatient or outpatient settings).

Insurance providers generally maintain data about patient demographics. Many dis-

eases disproportionately affect particular ethnic groups and most chronic diseases increase

in prevalence with advancing age. Demographic context can therefore be critical to accu-

rately interpret the severity of various diagnoses and assess the risk of various conditions.

1.1.3 Lab Values and Vital Signs. Binary diagnostic values are often obtained by

means of continuous measurements of various vital signs or biochemical values. Diabetes,

for instance, is diagnosed by requiring an individual to fast for 24 hours then drink a sugary

liquid. A positive diagnosis corresponds to blood sugar in excess of 200 mg/dL after two

hours. Similarly, ketoacidosis, a complication of diabetes caused by toxic levels of ketones

in the blood, is identified by measuring the ketone levels in blood and urine. Chronic

Kidney Disease is similarly diagnosed by measuring protein levels in blood and urine to

determine the effectiveness of filtration. Hypertension is defined simply as having repeated

blood pressure measurements in excess of 140/90. Because lab values and vital signs are

continuous, they provide a much more nuanced picture into an individual’s internal health

state than diagnosis, procedure, and drug codes alone. Lab values, however, can be difficult

to use because they are usually quite sparse. Some have sought to overcome the barrier of
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sparsity by imputing lab values via kernel regression [24]. Others have used continuous vital

sign monitors to predict the severe adverse events (e.g. events leading to cardiac arrest,

unexpected admission to ICU, death, or disability) [25, 26] and the onset of neonatal sepsis

[27].

1.1.4 Data Hierarchies and Taxonomies. A number of ontologies exist which hier-

archically group medical codes by their general types of physiological conditions. One of the

most commonly used is the Clinical Classification Software (CCS) system constructed by

the Agency for Healthcare Research and Quality (AHRQ). Many machine disease prediction

and medical code embedding frameworks use CCS to add additional relational information

to models and to validate results. Constructed for ICD-9 diagnosis and procedure codes,

CCS is designed to collapse the high granularity of ICD-9 into clinically relevant categories.

CCS has both a is built as a four-level hierarchy. Diagnoses and procedures are respectively

divided into 18 and 16 major high-level categories, with subcategories branching out in a

tree beneath each. CCS also offers a single-level groupings which are formed by simply se-

lecting particular nodes from the tree and lumping all of their descendant codes into a single

category. An example of the CCS hierarchy corresponding to infectious disease is shown in

Figure 1.1

1.2 Problems in Healthcare

1.2.1 Diagnostics. Treatment in healthcare settings begins with a diagnosis. Once a

problem is diagnosed, treatment can be prescribed to mitigate the associated condition.

The increasing volume of healthcare data contained in Electronic Health Records (EHRs)

has caused many to consider the possibility of designing automated clinical support and

disease detection systems based on patient history and risk factors [10]. A major focus in

healthcare ML is designing tools both to improve speed, accuracy, and cost current diagnosis

for patients, as well as predicting diagnosis to identify patients in need of preventative care.
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Figure 1.1: CCS hierarchy for infectious diseases. When a node corresponds to particular
single-level CCS category, at category is given in brackets after the node label.

Current Diagnosis. Many diagnostic machine learning models revolve around automat-

ing diagnosis based on medical test results. For example, [15] develops a method for field

cell microscopy images to efficiently and inexpensively identify malaria with limited testing

facilities while [12] utilizes deep learning to diagnose skin cancer from images of potentially

affected regions, achieving dermatologist -level accuracy. One of the most compelling cases

of automated diagnosis is that of multiple-instance learning (MIL), which seeks to give a

single diagnostic label to a bag of instances of patient data. Possible sources of this bag

of instances include medical imaging, where MRIs, CT scans, and mammograms [28], as

well as cell microscopy images [29, 30]. In each case, MIL allows a learning algorithm to

look at multiple images that combine to deliver a single diagnosis. Recent work combines

neural attention with MIL to identify which entities most contributed to the given diagnosis,

making results interpretable and verifiable by medical experts.

Machine learning can additionally be used to assist physicians in making accurate diag-

noses. Examples include [31], which employs deep learning on microscopy images of stained

blood cells to segment cancerous cells from normal cells for faster diagnosis, and [14], which

uses support vector machines on preprocessed MRI scans to improve diagnosis of Alzheimer’s

disease. Assistance can also support effective differential diagnosis, which is the process of

6



identifying a patient’s underlying disease when there are multiple possible outcomes for a

particular condition [2, 32].

Computer aided diagnostic tools can be a double edged sword. As diagnostic tools become

increasingly robust, physicians run the risk of becoming less attentive to important patient

details, assuming that computers will pick up the areas of concern. It is important to be

transparent about the limitations of ML diagnostic models to promote thoughtful integration

into diagnostic workflow rather than blind trust.

Predictive Diagnosis and Prognosis. Predictive diagnosis consists of identifying pa-

tients at high risk for developing high-impact conditions (usually chronic diseases) prior to

actual diagnosis. Predictive prognosis is the related task of predicting a patient’s disease

progression and the occurrence of complications. A number of past studies have attempted

to use patient laboratory tests [24, 33, 34], diagnoses [24, 32, 35, 36, 37, 38], and medications

[32] as means of predicting disease onset. One advantage of such models is the ability to em-

pirically learn predictors of disease risk from millions of patient histories, rather than relying

on previously identified risk factors. Models as simple as an L1 regularized logistic regression

have been effective in identifying unknown potential risk factors [38] while simultaneously

improving sensitivity and specificity of risk forecasting.

1.2.2 Risk Adjustment. Risk adjustment is the process of predicting future patient

costs, usually with the objective to modify premiums or capitation payments to accurately

reflect the cost of individuals. Since healthcare costs are dominated by the top decile

of patients, risk adjustment models typically rank individuals by probability of becom-

ing (and remaining) high cost. Traditionally, risk adjustment models focused on patient

demographic data to stratify cost bins, with significant improvements from incorporating

EHR data (usually in the form of binary indicators of various conditions or for EHR codes)

[39, 40, 41, 42, 43, 44]. Most models in literature use basic linear algorithms at best for their

predictions, though recent work has shown that combining past data with tree-based and

gradient boosting models can substantially improve results [43]. Current risk adjustment
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models seek interpretability by using linear models (e.g. logistic regression) to identify cur-

rent conditions indicative of future cost. The next generation of these models will combine

cost forecasting with disease prediction, so that models output both a cost ranking and the

future conditions that will drive that cost. Data scientists have an obligation to ensure that

such predictions are being used to benefit patients rather than to selectively deny care to

those who need it most.
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Chapter 2. Code Embeddings

2.1 Context

Vector space embeddings, or simply embeddings, are mathematical representations of con-

cepts that encode meaning and relationships. Embeddings were originally developed for

natural language processing (NLP) to encode similarity between words represent each word

as a vector wi ∈ R
N . Most algorithms to obtain embeddings leverage the disributional hy-

pothesis [45], which states that words that appear in similar contexts likely have similar

meanings. For example, consider the following set of sentences:

• R
n is a field.

• R
n is a Banach space.

• C is a field and a Banach space.

• Banach spaces are complete, normed, linear spaces.

From the above, a good word embedding algorithm would conclude that Rn and are similar

concepts and also that both are related to complete, normed, linear spaces (all of which

are correct). Thus, these word embeddings should like close to each other in R
N , where

“closeness” is usually defined using either Euclidian distance or cosine similarity. Once good

embeddings are obtained, related words can be found by a simple nearest neighbors search.

From a clinical perspective, we can obtain vector space embeddings of medical codes

from claims data to similarly learn which diagnoses and procedures likely occur in related

contexts. One would expect that to commonly co-occurring diagnoses would represent related

conditions. Discovering meaningful embeddings for medical concepts is an ongoing topic of

research in medical literature [2, 46, 1]. We thus discuss various embedding algorithms and

propose a framework for determining how well each embeds medical concepts.
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2.2 Terminology and Definitions

We introduce notation and definitions for commonly used NLP terminology, as well as intu-

ition for its adaptation to a medical context:

• Word: An atomic unit of text data, denoted wi. In written texts, these are actual

words. Words are diagnosis, procedure, or drug codes in a medical context.

• Sentence: A subset of words related for a specific purpose. In our case, these would

correspond to medical visits.

• Document: A collection of related sentences. Corresponds to the medical history of

a single patient.

• Corpus: A collection of documents. Corresponds to the histories of our entire patient

population.

• Vocabulary: The set C = {w1, w2, . . . w|C|} of all words in your corpus. In our case,

this consists of the sets of all possible medical codes in our data.

• N-Gram: An tuple T ∈ CN consisting of N contiguous words in a document. For

example, in the sentence “The quick brown fox jumped over the lazy dog”, the 3-

grams are:

– (The, quick, brown)

– (quick, brown, fox)

– (brown, fox, jumped)

– (fox, jumped, over)

– (jumped, over, the)

– (over, the, lazy)

– (the, lazy, dog)
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2.3 Word Embedding Algorithms

We discuss a variety of word embedding algorithms, many of the techniques of which we will

later apply to learning representations of medical concepts.

2.3.1 Word2Vec. Tomas Mikolov’s Word2Vec [47, 48] made word embeddings main-

stream by demonstrating that his embeddings conserved the natural intuition of human

linguistic understanding. The embeddings were also state of the art at the time of publica-

tion and are still competitive five years later. We thus examine the two techniques presented

by Mikolov for finding word vectors: skip-gram with negative sampling and continuous bag-

of-words . We focus on SGNS, since this seems to be the most popular. Our explanation

borrows intuition from [49].

Skip-Gram with Negative Sampling. Skip-gram with negative sampling (SGNS)

learns word embeddings by choosing embeddings for a center word wi ∈ Cw and its contexts

cw,i ∈ Cc, where Cw is the set of words to embed and Cc is the set of contexts for these

words. Though Cw and Cc will have the same words, it is useful to consider them separately

because we obtain different separate embeddings when words and contexts. The context of

w consists of all of the words in a symmetric window of L words on either side of w, thus

creating a 2L-gram that “skips” w. Let C(w) be the set of all context words of w and let D

be the collection of all word-context pairs, i.e.

D = {(wi, wi+l) : l ∈ Z ∩ [−L,L], l 6= 0, 0 ≤ i ≤ |Cw|} (2.1)

If we let θ be the parameters of our model (i.e. our word and context embedding vectors),
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then we seek to choose θ to optimize the following cost function:

θ = argmax
θ

∏

w∈Corpus

[

∏

c∈C(w)

p(c|w; θ)
]

(2.2)

= argmax
θ

∏

(w,c)∈D

N(w,c)p(c|w; Θ) (2.3)

where N(w,c) is the number of times the word-context pair (w, c) appears in the corpus.

p(c|w; θ) is parameterized by the softmax function:

p(c|w; θ) =
evw·vc

∑

c′∈Cc
evw·v′c

(2.4)

Substituting equation 2.4 into 2.3 and taking the log gives the following objective func-

tion:

argmax
θ

∑

(w,c)∈D

(

vw · vc − log(
∑

c′∈Cc

evw·v′c

)

(2.5)

This objective gives good embeddings in the sense that similar words should have sim-

ilar vectors. Unfortunately, a corpus size can easily be in the billions with hundreds of

thousands of words in the vocabulary, making this infeasible to compute. Accordingly, we

heuristically modify the objective function to learn to differentiate between word-context

from the training data and pairs that are not. Thus, for each given pair (w, c) ∈ D, we

sample k contexts according to the distribution p(c|Corpus).75

C
, where p(c|Corpus) is simply

the unigram distribution, (i.e. p(c|Corpus) = Nc

|Corpus|
, where Nc is the number of times that

the context c appears in our corpus) and C is a normalization constant. While one could

simply use the unigram distribution to choose negative context words, the exponent causes

us to up-sample rare words, thus ensuring that uncommon words are sufficiently represented

to obtain good representations. Let p(D = 1|w, c; θ) = 1
1+e−vw·vc be the probability that a

word-context pair (w, c) is in the training data given our word embeddings, thus making

p(D = 0|w, c; θ) = 1
1+evw·vc the probability that the context for word w was chosen randomly.
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Our new optimization problem thus becomes:

θ = argmax
θ

∏

(w,c)∈D

p(D = 1|w, c; θ)
∏

(w,c′)∈D′

p(D = 0|w, c′; θ) (2.6)

= argmax
θ

∑

(w,c)∈D

log(
1

1 + e−vw·vc
) +

∑

(w,c′)∈D′

log(
1

1 + evw·v′c
) (2.7)

Where D′ is a collection of “negative” word-context pairs, sampled k times for each word

w in our corpus. This objective function is then optimized via some variant of stochas-

tic gradient descent. Once the optimization has converged, context embeddings {vc} are

discarded and the each word is assigned its word embedding vw. Though this model is

heuristically driven, it has been show to produce good results in practice. Proposed mod-

ifications to improve performance include further down-sampling frequent words, using a

dynamically-sized context window, where the window size is drawn uniformly from each

word from {1, 2, · · · , L}, and assigning each word the concatenation of its word and context

embeddings.

2.3.2 GloVe. GloVe is a method originally developed for finding vector space word em-

beddings based on word context (i.e. co-occurrence with other words)[50]. GloVe learns to

represent semantic meaning by considering words in our corpus pairwise and comparing the

probability that each co-occurs with a given context word. To do so, define Xij to be the

number of times word j appears in the context of word i and Xi =
∑

j Xij to be the total

number of times word i appears in the context of any word. GloVe seeks to find word vectors

wj and word context vectors w̃j that minimize the cost functional:

J =
C

∑

i,j=1

f(Xij)(w
T
i w̃j + bi + b̃j − log(Xij))

2 (2.8)

which is essentially a weighted least squares problem. The pieces of J are as follows:
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(i) The weighting function f is a non-decreasing, bounded function that increases the

weight of frequent co-occurrences while down-weighting infrequent co-occurrences. More-

over, f is chosen to be relatively small for large x so that frequent words are not

excessively overweighted. In practice, f is chosen to be

f =











(x/xmax)
α x ≤ xmax

1 x > xmax

where α=0.75 and xmax = 100 are noted to work well empirically by the authors.

(ii) wi and w̃j are our word vector and context vector representations, respectively, with

respective biases (intercepts) bi and b̃j. These are the parameters we seek to learn with

our model.

(iii) log(Xij) comes from considering taking the log of the probabilities Pij = P (j|i) =
Xij

Xi

and noting that the denominator Xi is independent of j and can thus be absorbed into

the bi.

The full derivation of equation 2.8 can be found in [50]. This equation is then minimized

numerically using gradient descent, then yielding the desired word embeddings.

2.4 Medically Adapted Embedding Algorithms

EHR’s are similar to corpora of text in many ways. Each patient’s EHR can easily be thought

of as a document of text in which individual medical codes are words and visits are sentences.

While such a framework can produce reasonably good disease prediction results [51], such

models discard much of the temporal relationship between codes, as well as demographic

variables that lend critical context to an individual’s observed diagnoses.

Choi et al. [1] notes that a high-quality medical embeddings should satisfy three criteria,

to which we add two more:
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(i) Embeddings should meaningfully incorporate as much EHR data as possible, including

visit-level groupings, temporal relationships, and demographic information.

(ii) Learned embeddings should be interpretable, thus allowing them to be used by medical

personnel outside of isolated prediction tasks.

(iii) Embedding algorithms should be efficient enough to process industry-scale datasets,

consisting of hundreds of thousands of patients and millions of visits.

(iv) Embeddings should improve prediction accuracy across across a variety of tasks over

naive one-hot or bag-of-codes based approaches to medical representation.

(v) Embeddings should be able to be constructed without expert hand-engineering, to

allow easy adaptability to various medical coding systems, particularly since these

systems are regularly updated.

We summarize various approaches to code medical code embedding and compare their

relative strengths and weaknesses.

2.4.1 Naive Application of NLP word Embedding Algorithms. Medical records

contain nuanced data that contain both discrete medical concepts (i.e. diagnosis, procedure,

and medication codes), as well as demographic data and continuous valued health measure-

ments (usually in the form of lab tests). Though these demographic and test data contain

relevant information, many papers demonstrate that one can obtain meaningful predictive

results by simply discarding these variables and naively applying GloVe or Skip-gram to an

individual’s temporally ordered sequence of medical codes [52, 53]. Patient representations

are then obtained by simply summing the embedded representations of an individual’s med-

ical history. Though simple, E. Choi et al. demonstrate significant performance gains in

predictive accuracy across a number of classifiers [53] while providing qualitative demonstra-

tions that embeddings discover meaningful and subtle relations between related conditions.

We perform our own experiments on such naively obtained embeddings as both interpretable
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representations and as inputs to predictive models. The details of these experiments can be

found in Chapter 5.

A number of authors make a number of simple modifications to these naive methods

to accommodate the differences between medical record histories and normal corpora of

text. Both Y. Choi et al. [46] and E. Choi et al. [1, 32] note that temporal relationships

between medical codes are the primary determinant for relatedness between codes. Y. Choi

also notes that particular diagnosis can occur multiple times in a particular time window

and thus proposes removing duplicate codes within a window, though it is unclear whether

this improves embeddings or degrades them by downplaying the importance of particularly

salient codes. There also appears to be general disagreement regarding the length of temporal

period to consider, with window size ranging from a single day to three months. In actuality,

it is likely that short-term relationships are more highly related than distant ones and that

a weighting function that decays with temporal distance could capture the benefits of both

approaches.

2.4.2 Med2Vec. E. Choi et al. [1] develops a framework for jointly learning medical

code and visit representations in an interpretive manner. We describe the assumptions used

to learn each type of representation, then present the unified training procedure to learn

both simultaneously.

Code embedding procedure. Following the five aforementioned criteria, Med2Vec

creates nonnegative code embeddings where each dimension can be interpreted as a latent

dimension of disease with magnitude along each dimension as a measure of severity. This is

done by training a skip-gram model where the embedding matrix is constrained to be positive

using the element-wise ReLU function, ReLU(x) = max(x, 0). We describe the procedure

for learning Med2Vec embeddings, presenting all derivations at the level of a single patient for

simplicity and clarity of notation. Let C represent our vocabulary of codes and Wc ∈ R
m×|C|

be the regular skip-gram weight matrix with W ′
c = ReLU(Wc) as our embedding matrix.

Then given a sequence of visits V1,V2, . . . ,VT , we can learn individual code representations
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Figure 2.1: Diagram of Med2Vec architecture for learning visit-level embeddings, borrowed
from [1]. Note that xt is a multi-hot vector corresponding to the medical codes corresponding
to the tth visit and dt is that patient’s demographic information at the time of the tth visit.

by maximizing the log likelihood:

max
W ′

c

1

T

T
∑

t=1

∑

i:ci∈Vt

∑

j:cj∈Vt,j 6=i

p(cj|ci)

where ci is the ith code in the visit Vt. The probability p(cj|ci) is defined using softmax as

p(cj|ci) =
exp

(

(W′
c[:, j])

T (W′
c[:, i])

)

∑|C|
k=1 exp

(

(W′
c[:, j])

T (W′
c[:, i])

)

where W ′
c[:, j] denotes the jth column of W ′

c.

Visit embedding procedure. Med2Vec simultaneously learns to create visit-level rep-

resentations of patients, as shown in Figure 2.1. For each patient, every visit Vt is represented

as a multi-hot, binary vector xt ∈ {0, 1}|C|, where xt[i] (the ith entry of xt) is 1 iff the ith

medical code ci ∈ Vt. The goal is to learn a mapping fv : {0, 1}|C| → R
n that takes any

possible visit to a real-valued, n-dimensional vector. This is done by first learning an inter-

mediate representation ut = ReLU(Wcxt + bc), where Wc is the code embedding matrix

given above before being passed through the ReLU and bc is a bias term.
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This intermediate representation is then concatenated with the patient’s demographic

information at time t and the process is repeated to obtain a visit level representation

vt = ReLU(Wv[ut,dt] + bv), where [·, ·] represents vector concatenation.

Each visit represents a state in a patient’s continuously developing medical history. It

is therefore reasonable to assume that a patient’s visit at time t should be related to visits

that preceded and followed it. Given a visit representation vt, we train a softmax classifier

to predict visits in a context window of size l by minimizing the cross entropy error between

actual and predicted visits:

min
Ws,bs

1

T

T
∑

t=1

∑

−l<i<l,i 6=0

(

− xT
t+ilog(ŷt)− (1− xt+i)

T (1− log(ŷt))
)

(2.9)

where 1 is the vector with all 1’s and Ws and bs are the weight matrix bias vectors, respec-

tively, for the softmax classifier:

ŷt =
exp

(

Wsvt + bs

)

∑|C|
j=1 exp

(

Ws[j, :]vt + bs[j]
)

(2.10)

Joint Training. Code and visit representations can be learned more robustly by com-

bining the loss functions and optimizing them simultaneously. This encourages our model

to learn code representations that are useful for visit representations and for our visit repre-

sentations to learn from global code co-occurrence statistics. We thus learn our embeddings

by optimizing the following loss function:

argmin
Wc,v,s,bc,v,s

−1

T

T
∑

t=1

{

∑

−l<i<l,i 6=0

(

xT
t+ilog(ŷt) + (1− xt+i)

T (1− log(ŷt))
)

+
∑

i:ci∈Vt

∑

j:cj∈Vt,j 6=i

p(cj|ci)
}

(2.11)

2.4.3 GRaph-based Attention Model (GRAM). GRAM [2] a framework for incor-

porating knowledge from human-derived medical ontologies to give a model context regarding

which codes should naturally be grouped together based on medical similarity. Due to the
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high granularity of medical codes, two diagnoses could have nearly the same physiological

meaning, but would appear as orthogonal one-hot vectors when training a traditional embed-

ding algorithm. ICD-9, ICD-10, and CCS are all ontologies of disease concepts containing

hierarchies of disease concepts and thus representing different each condition at various levels

of granularity (for an example of the CCS hierarchy for infectious disease, see Figure 1.1).

Two codes that are close to each other in a medical ontology are likely similar in real life,

allowing us to improve knowledge transfer between medical records. This has the additional

benefits of improving the representation of codes that appear infrequently in medical records

as well as reducing the data requirements to learn meaningful results, thus improving the

predictive capacity of smaller providers.

Most medical ontologies are structured as directed acyclic graphs (DAGs) (in fact, ICD

and CCS are sets of trees). Thus, let our ontology G be a DAG, where we assume the concept

hierarchy is presented in the form of parent-child relationships, where nodes higher up the

DAG represent more general concepts and leaf nodes represent the medical codes in our code

vocabulary C. We will refer to the ontology G as the knowledge DAG.

Let C ′ = {c|C|+1, c|C|+2, · · · c|C|+N} be the set of all ancestors of the codes in C, giving us

the hierarchy DAG with nodes D = C + C ′. Note that each parent node in C ′ represents a

more general medical concept than its children, a concept of which each of its children are

specific instances. This allows our model to pay more attention to parents when little child

data exists.

Code embeddings are learned in an end-to-end fashion using an attention mechanism,

which learns the optimal convex combination of leaf node embeddings and parent node

embeddings to represent each concept. A diagram of this process, borrowed from [2], is

depicted in Figure 2.2. This allows code embeddings to be roughly learned from parents in

the absence of adequate code-level data. Specifically, if we let A(i) be the indices of all of the

ancestors of ci ∈ C and let ej be the embedding of each node dj ∈ D, then the embedding
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Figure 2.2: End-to-end GRAM architecture, as shown in [2]. Note that the attention mecha-
nism represents each medical code by learning a convex combination of its initial embedding
the the embeddings of its ancestors in the knowledge DAG. These embeddings are then used
to parameterize visit representations for a predictive RNN model.

Φci is defined as the the convex combination:

Φci =
∑

j∈A(i)

αijej (2.12)

with the constraints
∑

j∈A(i)

αij = 1, (2.13)

αij ≥ 0 ∀j ∈ A(i) (2.14)

The weights αij are computed via the softmax

αij =
exp

(

f(ei, ej)
)

∑

k∈A(i) exp
(

f(ei, ej)
) (2.15)

where f : Rm×R
m → R if a function representing the compatibility between the preliminary

node embeddings ei and ej. We parameterize f by a single-layer feed-forward neural network
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Figure 2.3: Co-occurrence matrix construction to pre-train node embeddings. Note that
nodes further up in the knowledge DAG will co-occur with more things because they corre-
spond to more concepts.

(i.e. a multi-layer perceptron) as:

f(ei, ej) = uT
a tanh(Wa







ei

ej






+ ba) (2.16)

Here, Wa is the weight matrix for concatenation, ba is a bias vector, and ua is the weight

vector for calculating the final scalar value.

In order to improve model performance and speed convergence, the embeddings ej can

be pretrained via GloVe, where each if two codes ci and cj co-occur, then each co-occurs

with the other’s ancestor nodes. Each of the ancestor nodes of ci and cj also co-occur with

one another. A visualization of the construction, borrowed from [2], is given in Figure 2.3.

GRAM simultaneously trains the attention mechanism and a RNN that predicts the

medical codes of the next visit to improve performance. Once embeddings Φci for each

medical code ci are obtained, they are concatenated into an embedding matrix G ∈ R
m×|C|,

where m is the dimension of our embeddings. Visits are input as multi-hot vectors xt ∈
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{0, 1}|C| and visit representations vt obtained using the embedding matrix G as

vt = tanh(Gxt) (2.17)

Let ŷt = x̂t+1 be the predicted multi-hot vector corresponding to a patient’s t+1th visit.

Then the entire visit prediction architecture can be described as:

v1,v2, · · · ,vt = tanh(G[x1,x2, · · · ,xt]) (2.18)

h1,h2, · · · ,ht = RNN(v1,v2, · · · ,vt; θr) (2.19)

ŷt = x̂t+1 = Softmax(Wht + b) (2.20)

where θr parameterizes our RNN and W and b are the weight and bias for the softmax layer.

The RNN used can be any RNN cell that avoids the vanishing gradient problem [54, 55],

some of which are described in 3.5. Th RNN is then trained (along with the attention

mechanism MLP) by minimizing the cross entropy loss for predicting the codes in the next

visit:

L(x1,x2, · · · ,xT ) =
1

T − 1

T−1
∑

t=1

(

− yT
t log(ŷt)− (1− yt)

T (1− log(ŷt))
)

(2.21)

2.5 Embedding Evaluation

Because medical data is harder to come by and less mainstream than simple textual data,

metrics for embeddings of medical concepts are less established than those for NLP tasks.

However, a number of papers present both qualitative and quantitative evaluation measures,

as follows:

2.5.1 Qualitative Evaluation. Qualitative embedding evaluations are by far the most

common metric employed in the medical embedding literature. One good test for embedding

goodness is to select random codes from the vocabulary, look at their nearest neighbors, and
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see if those neighbors are, in fact, actually related to the chosen code. This evaluation is

employed in [52, 2, 53, 46] and is useful in providing intuition of what medical relationships

an algorithm is learning. While this method can provide good intuition, it is difficult to

assess in practice because going through individual groupings is a time intensive process and

requires substantial medical expertise.

2.5.2 Quantitative Evaluation. In [46], Y. Choi proposes two methods for quantifying

the goodness of medical code embeddings. Both leverage physician-compiled taxonomies

and relational systems and quantify how well embedded representations align with these

groupings.

National Drug File Reference Terminology Relatedness. The National Drug File

- Reference Terminology (NDF-RT) is a collection of information about drugs approved in

the United States. NDF-RT contains information about drug ingredients, chemical struc-

ture, physiological effects, mechanism of action, dose form, pharmacokinetic properties (e.g.

toxicity, how the drug interacts with various bodily systems), and diseases the drug can be

used to treat or prevent. If one has both drug and diagnosis embeddings, this database

can be used to see how well embeddings align with documented clinical knowledge. Let R

define a relation in NDF-RT (i.e. either ”may treat” or ”may prevent”) and let V be our

set of medical concepts, where V ∗ ⊂ V is the subset of these concepts for which there is

at least one pharmacological concept with a relation given in NDF-RT. Define a seed pair

s to be a the directional vector between two concepts, for example ΦTarceva − ΦLungCancer

(Tarceva is a drug commonly used to treat lung cancer). This allows us to quantify how

well a medical parallel of linguistic analogical reasoning holds using the following relatedness

medical relatedness measure (MRM) for a given seed pair and given neighborhood size k:

MRMNDF−RT (V,R, k, s) =
1

|V ∗ |

∑

v∈V ∗

1R

(

k
⋃

i=1

(v − s)(i)
)

(2.22)
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where 1R denotes the indicator function which returns 1 if any of the top k neighbors of the

given medical concept are in the relation R and 0 otherwise. The notation (v− s)(i) denotes

the ith neighbor of v − s calculated after the subtraction Φv − Φs.

Noting that s is generally set to be the difference of two medical concepts, this measure

closely parallels the analogical reasoning task introduced by Mikolov et al. in [56]. If Φs =

ΦTarceva − ΦLungCancer as described above and we set Φv = ΦRevlimid (note that Revlimid is

a treatment for acute leukemia), then we would expect the following to hold:

Φv − Φs = ΦLungCancer − ΦTarceva + ΦRevlimid (2.23)

≈ ΦAcuteLeukemia (2.24)

This is analogous to the famous king − man + woman ≈ queen from [56]. Producing

embedding vectors that perform well on this task is desirable because it suggests that these

vectors have dimensions of interpretable meaning, an important property noted in [57]. One

can also set s = 0 to obtain the nearest the k nearest neighbors of the code in question.

Clinical Classification Software Relatedness. Clinical Classification Software (CCS)

Relatedness is a measure of how well code embeddings group together in the CCS medical

hierarchy introduced in section 1.1.4. Let G be a particular level of granularity, i.e. the deep-

est level of the multi-level CCS tree on which we allow leaf nodes to exist. Let V (G) ⊂ V

denote all ICD-9 codes in our vocabulary and k denote the number of neighbors to consider.

Then we define the CCS Medical Relatedness Measure as

MRMCCS(V,G, k) =
1

|V (G)|

∑

v∈V (G)

k
∑

i=1

1G(v(i))

log2(i+ 1)
(2.25)

where v(i) is the ith nearest neighbor of v and 1G is the indicator of whether v(i) belongs

to the same group as v according to the given granularity G. Note that when k = 1, this

corresponds to the proportion of codes whose top neighbors are in the same CCS group.

While this metric is well suited to be used with embeddings of insurance concepts, it is
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limited in that it’s score isn’t improved by related conditions that belong in different cate-

gories (i.e. chronic kidney disease and heart failure both related to underlying hypertension).

Moreover, procedure codes cannot be evaluated if CPT codes are used, as is common for

many insurance datasets.

Evaluation based on Predictive Usefulness. Perhaps the most common means of

evaluating embeddings is based on which performs best in the prediction task at hand. If

the ultimate objective is to improve early diagnosis of chronic diseases, one should favor the

embedding that is best suited to doing so. Our primary measure of quantitative embedding

performance, therefore, will be how suited each is to early prediction of disease onset.
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Chapter 3. Machine Learning Models

3.1 Notation

In this chapter, we assume that we have a set of feature vectors D = {x1,x2, · · · ,xN}, where

each xi ∈ R
n. Each feature vector xi has a corresponding label label yi which determines

to which class it belongs. Our goal is to find the best possible classifier, which is a function

f : Rn → {0, 1}, such that f assigns the correct labels to as many of the vectors xi ∈ D as

possible. We call each pair (xi, yi) a data point.

3.2 Random Forests

3.2.1 Decision Trees. A decision tree is a binary classifier that labels data by splitting

using the data’s features to split them into homogeneous subsets and labeling each subset

according to the majority class in the subset. A decision tree begins with a single leaf node

containing all of the data and then chooses a particular feature j and a splitting threshold

τ which divide the data into two subsets: Sr = {xi : xi[j] ≥ τ} and Sl = {xi : xi[j] < τ}.

These subsets respectively correspond to the subsets of data represented at the right and

left child nodes of our initial node. The feature and threshold are chosen in a greedy manner

at each subsequent node to optimize a predetermined metric of data impurity. Common

choices include minimizing Gini impurity [58] and maximizing information gain.

Gini Impurity. To define Gini impurity, let our data be defined into K classes. Let tp

denote a node in our decision tree left and right child nodes tl and tr, respectively. The Gini
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impurity G(tp) of a particular node is defined as:

G(tp) =
∑

i 6=j

p(i|tp)p(j|tp) (3.1)

=
K
∑

i=1

p(i|tp)
∑

j 6=i

p(j|tp) (3.2)

=
K
∑

i=1

p(i|tp)(1− p(i|tp)) (3.3)

= 1−
K
∑

i=1

(p(i|tp))
2 (3.4)

where p(i|tp) is the conditional probability of class i given that we are in node tp. The change

in impurity for a given node split is therefore:

∆G(tp) = −G(tp) + PrG(tr) + PlG(tl) (3.5)

= −

K
∑

i=1

(p(i|tp))
2 + Pr

K
∑

i=1

(p(i|tr))
2 + Pl

K
∑

i=1

(p(i|tl))
2 (3.6)

Pr and Pl denote the proportion of the data in tp in it’s right and left children, respectively.

Let L represent the set of all leaf nodes of our given tree T . Then the total Gini impurity

of T is given by:

G(T ) =
∑

ℓ∈L

PℓG(tℓ) (3.7)

where Pℓ is the proportion of all of the data in the leaf node ℓ. threshold.

Information Gain. Maximizing information gain is equivalent iteratively choosing the

splits that most decrease the entropy of our tree, which is defined as:

H(tp) = −

K
∑

i=1

p(i|tp)log2(p(i|tp)) (3.8)
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Similar to change in Gini impurity, information gain is simply the change in entropy between

a parent and it’s children:

IG(tp, tr, tl) = H(tp)− (PrH(tr) + PlH(tl)) (3.9)

For both Information Gain and Gini impurity, the splitting process described above

continues until each leaf node is perfectly pure or there is no node that can be split to

improve the purity of our tree above a predefined threshold.

3.2.2 Random Forest: An Ensemble of Decision Trees. The random forests (RF)

algorithm [59] is one of the most popular binary classification baselines for their simplicity

and intuitive interpretability. A random forest is a collection of independent decision trees,

each of which acts as a weak binary classifier for the dataset. Each tree is constructed using a

bootstrap sample of training data and training features, meaning that only a random subset

of data points and features are used for each tree. Classifications are made by allowing all

trees in the sample to vote on the outcome for each datum, where votes are often weighted

by each tree’s confidence about the class of the datum in question. This bootstrapping

and aggregation method defines an ensemble classifier and both increases accuracy and

regularizes the classifier against overfitting.

3.3 XGBoost

3.3.1 Model Definition. XGBoost: eXtreme Gradient Boosted Trees is a smart method

of building a forest of decision trees that incorporates regularization and a number of com-

putational speed-ups to the method of gradient boosting proposed by Friedman in [60]. To

begin, we define an objective function obj(Θ) as:

obj(Θ) = L(Θ) + Ω(Θ)
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where L(Θ) is the training loss function of our model and Ω(Θ) is the regularization term.

Minimizing the training loss ensures that our model is predictive, while the regularization

term penalizes our model for being too complex. This regularization term separates XGBoost

from AdaBoost and other gradient boosting algorithms, which omit this term and are thus

much more prone to overfitting. Combining these elements gives a model that is both simple

and predictive.

3.3.2 Formulating the Objective Function. XGBoost classifies observations by tak-

ing the sum of scores generated by a forest of CARTs (Classification And Regression Trees)

for each observation in a dataset. Let fk, k ∈ {1, ..., K} be a set of CARTs. Then the

predicted score for an observation i is given by ŷi =
∑K

k=1.

Training Loss. The loss function is defined as

L(Θ) =
n

∑

i=1

l(yi, ŷi)

where l(·) could be square loss, cross entropy, logistic loss, gini impurity, etc.

Regularization. We define the complexity for a particular tree as

Ω(fk) = γT +
1

2
λ

T
∑

j=1

w2
j

where T represents the number of leaf nodes of a given tree and wj represents the score at leaf

j. We can also replace λ
∑T

j=1 w
2
j with α

∑T

j=1 |wj| if we wish to perform L1 regularization

instead of L2 regularization.

Objective Function. We define our objective function as follows:

obj(t) =
n

∑

i=1

l(yi, ŷ
(t−1)
i + ft(xi)) +

t
∑

k=1

Ω(fk)

When adding trees, we want to add each new tree ft in a way to minimize our objective

function. We use a second order approximation using the first two terms of the Taylor

29



expansion of our loss function to yield the following objective function at step t:

obj(t) =
n

∑

i=1

[l(yi, ŷ
(t−1)
i ) + gift(xi) +

1

2
hif

2
t (xi)] +

t
∑

k=1

Ω(fk)

where gi = ∂
ŷ
(t−1)
i

l(yi, ŷ
(t−1)
i ) and hi = ∂2

ŷ
(t−1)
i

l(yi, ŷ
(t−1)
i ). This simplifies to:

obj(t) =
n

∑

i=1

[gift(xi) +
1

2
hif

2
t (xi)] + Ω(fk) + constant

Plugging in for our regularization term, we obtain the following objective to optimize at

each step:

obj(t) =
n

∑

i=1

[gift(xi) +
1

2
hif

2
t (xi)] + γT +

1

2
λ

T
∑

j=1

w2
j (3.10)

=
T
∑

j=1

[(
∑

i∈Ij

(gi)wj +
1

2
(
∑

i∈Ij

(hi) + λ)w2
j ] + γT (3.11)

where Ij = {i : q(xi) = j} and q : Rd → {1, 2, · · · , T} is a function assigning each observation

to a particular leaf node. If we let Gj =
∑

i∈Ij
gi and Hj =

∑

i∈Ij
hi then we obtain:

obj(t) =
T
∑

j=1

[Giwj +
1

2
(Hi + λ)w2

j ] + γT

which yields optimal values:

w∗
j = −

Gj

Hj + λ

obj∗ = −
1

2

T
∑

j=1

(
G2

j

Hj + λ
) + γT

Based on this above strategy, when building our trees, we calculate the gain from a

particular tree split as:

Gain =
1

2

[ G2
L

HL + λ
+

G2
R

HR + λ
−

(GL +GR)
2

HL +HR + λ

]

− γ

30



The above equation thus mandates that splits can only occur if they improve the objective

function more γ, which is exactly what pruning accomplishes in normal random forests. By

incorporating this into the tree building process, XGBoost avoids the overhead of building

and removing superfluous nodes.

3.4 Light Gradient Boosting Machine

The Light Gradient Boosting Machine (LGBM) is very similar to XGBoost, with three main

modifications designed to improve speed and performance:

(i) Leaf-wise splitting: When constructing a tree in XGBoost, one selects a maximum

depth d creates an ensemble of decision trees with 2d nodes, so long as each parent met

the appropriate splitting criteria. LGBM, on the other hand, iterates through leaves

and selects the optimal leaf to split, regardless of its current level in the tree. This

theoretically improves classification accuracy with a given number of splits.

(ii) Gradient-based One Sided Sampling (GOSS): GOSS is a means of sampling

training instances to improve the calculation of information gain for each split. Noting

that data instances with small gradients are generally already well trained, GOSS fo-

cuses on the data with the highest gradients to improve tree construction. Specifically,

it takes the top a× 100% of training instances with the largest gradients (call this set

Sa) and then randomly samples gradients from b × 100% of the remaining data (call

this Sb). The information gain is then calculated as

IG = IG(Sa) +
1− a

b
IG(Sb)

Taking the instances with top gradients focuses our updates on under-trained instances

while adding the reweighting term prevents the underlying distribution from changing

significantly.
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(iii) Exclusive Feature Bundling: Exclusive feature bundling is a means of speeding

training by bundling sets of mutually exclusive sparse features (meaning features that

are never concurrently nonzero) into single features. Though finding the optimal fea-

ture bundle is NP-hard, an approximate, greedy solution can be found in quadratic

time by relaxing the mutual exclusivity constraint to allow the bundled features to have

a fixed number of overlaps. By condensing numerous sparse features into a few dense

features, fewer variables need to be evaluated to determine each split, thus leading to

potentially large decreases in training time.

3.5 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are designed to extract meaningful relationships out

of variable-length sequential data such as text or medical codes. Unlike traditional neural

networks, which assume that all inputs are independent, the output of an RNN at each time

step is dependent upon the computations in previous time steps.

One major problem with RNNs is the vanishing gradient problem [54, 55], which makes it

difficult for vanilla RNNs to learn temporal relationships of more than a few time steps. This

can be mitigated by using long short-term memory (LSTM) cells [61] or gated recurrent unit

(GRU) cells [62]. These keep an internal state that is modified by sequential input, allowing

cells to learn potentially arbitrarily long dependencies. Depictions of the LSTM and GRU

cell architectures, borrowed from [3], are given in Figure 3.1. We discuss each in detail below.

3.5.1 Long Short Term Memory (LSTM) Cells. LSTM cells encode long-term tem-

poral relationships by keeping an internal state Ct that is passed between time steps. This

state is updated with each new input xt the network and is used to inform the output ht at

each time step.

Each LSTM cell takes intakes the inputs from the current time step xt as well as the

output of the previous step ht−1 and the hidden state from the previous time step Ct−1.
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Figure 3.1: Depiction of LSTM and GRU architectures, borrowed from [3]. In the above, ×
denotes elementwise multiplication, + denotes addition, and σ denotes the sigmoid function,
which is taken after taking a learned affine transformation of the inputs.

The hidden state is updated and a new output ht is calculated as follows: First, define the

intermediate values:

ft = σ(U (f)ht−1 +W (f)xt + b(f)) (3.12)

it = σ(U (i)ht−1 +W (i)xt + b(i)) (3.13)

ot = σ(U (o)ht−1 +W (o)xt + b(o)) (3.14)

C̃t = tanh(U (g)ht−1 +W (g)xt + b(g)) (3.15)

Then, calculate the desired updates as follows:

Ct = σ(ft ∗ Ct−1 + it ∗ C̃t) (3.16)

ht = tanh(Ct) ∗ ot (3.17)

In the calculation of Ct, ft ∗ Ct−1 is known as the “forget gate” because learns what

part of the previous state to discard, whereas the piece it ∗ C̃t could be considered the new

knowledge learned by the internal state.
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3.5.2 Gated Recurrent Unit (GRU) Cells. The GRU is similar to the LSTM, only

that it dispenses with the internal hidden state and only uses the input for the current time

step xt and output of the previous time step ht−1. It does this by calculating the intermediate

values:

rt = σ(U (r)ht−1 +W (r)xt) (3.18)

zt = σ(U (z)ht−1 +W (z)xt) (3.19)

h̃t = tanh(U (h)(rt ⊙ ht−1) +W (r)xt) (3.20)

(3.21)

Following which we return the output:

ht = (1− zt)⊙ ht−1 + (zt ⊙ h̃t) (3.22)

3.6 Visualization Algorithms

3.6.1 t-SNE. In order to create meaningful visualizations of our clusters, we use a non-

linear projection called “t-SNE,” which stands for t-distributed Stochastic Neighbor Em-

bedding [63]. The objective of t-SNE is to project data in a way that preserves local data

structure (i.e. data that are close together in N-dimensional space are also are mapped to-

gether) while also keeping dissimilar data separate (i.e. the objective of principal component

or linear discriminant projections). t-SNE does this by modeling similarity between points

as conditional probabilities, where Pj|i is defined to be the probability of choosing point

j as a neighbor to point i if neighbors are picked proportional to the density of a normal

distribution centered at point i. Mathematically, this is defined as:

pj|i =
exp(−||xi − xj||

2/2σ2)
∑

k 6=i exp(−||xi − xk||2/2σ2)
(3.23)
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where xi, xj, and xk are all points in our high-dimensional space and || · || is the Euclidian

norm. We then define pseudo joint probabilities pij =
pi|j+pj|i

2n
, where n is the number of

data points. Doing so gives us symmetric joint probabilities (i.e. pji = pij) and ensures that
∑

j pij >
1
2n

for all i, is necessary to ensure that outlying points contribute meaningfully to

the cost function that determines their low-dimensional representation.

We define the joint probability between our projected points yi similarly using symmetric

probabilities that follow a t-distribution with 1 degree of freedom as :

qij =
(1 + ||yi − yj||

2)−1

∑

k 6=i(1 + ||yi − yk||2)−1
(3.24)

Student’s t-distribution is chosen because its heavy tails will cause even moderately dissimilar

points to be mapped far apart in projected space, which can be seen in the cost function

(3.25) below. To create this function, we note that we want to find points yi in our projected

space that preserve our joint probabilities (i.e. pij = qij). We thus minimize the Kullback-

Liebler divergence of the high-dimension distribution P and the low dimension distribution

Q which is defined as:

C = KL(P ||Q) =
∑

i

∑

j

pijlog(
pij
qij

) (3.25)

Minimizing this cost function is equivalent to minimizing the cross entropy, since the

two differ only by an additive constant. We use gradient descent (often with a momentum

term to speed convergence) to minimize the above cost function, yielding a low-dimensional

distribution that preserves joint probabilities between points. A more detailed exploration

of the derivation of t-SNE can be found in [63].

35



Chapter 4. Metrics

4.1 Receiver Operating Characteristic (ROC)

4.1.1 ROC Curves. ROC curves are a visual means of evaluating how well a binary

classifier rank-orders predictions for a binary prediction task (such as disease forecasting).

We assume that our classifier gives each data point a score between 0 and 1 and then assigns

predictions by choosing a threshold and labeling everything with a score above the threshold

1 and everything below 0. To create a ROC curve, one chooses N evenly spaced thresholds

between 0 and 1 and calculates the true positive rate (TPR) and false positive rate (FPR)

at each threshold. Let TP, FP, TN , and FN denote the number of true positives, false

positives, true negatives, and false negatives predicted for a given threshold. Also let P and

N denote the total numbers of positive and negative entries in our dataset. Then TPR and

FPR are defined as follows:

TPR =
TP

P
(4.1)

=
TP

TP + FN
(4.2)

FPR =
FP

P
(4.3)

=
FP

TP + FN
(4.4)

Note that as the threshold value increases, the TPR and FPR both increase monotoni-

cally. An example of ROC curves for prediction of type II diabetes mellitus is given in figure

4.1

4.1.2 Area Under Receiver Operating Characteristic (AUROC) Curve.
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Figure 4.1: ROC curve for type II diabetes.

Definition and Probabilistic Interpretation. Once a ROC curve has been con-

structed, a common metric of evaluation is to look at area under the curve (AUC), which

we will specifically denote as AUROC to differentiate it from the area under other curves

used to evaluate an estimator. Intuitively, a higher AUC means that the classifier is doing

a better job at differentiating between classes. In fact, the ROC AUC can be shown to be

exactly the probability that a classifier assigns higher scores to positive examples than to

negative ones. To do so, consider a binary classifier p̂(·) that assigns x a score between 0 and

1, where the actual class of x is determined by choosing a threshold τ ∈ (0, 1) and assigning

labels such that

ŷ(x) =















1, p̂(x) > τ

0, otherwise

Let y(x) map x to its correct label and define two functions T (τ) and F (τ) as follows to

respectively represent the TPR and FPR at a given threshold:

T (τ) = P (p̂(x) > τ |y(x) = 1) (4.5)

F (τ) = P (p̂(x) > τ |y(x) = 0) (4.6)

Writing the TPR as a function of the FPR allows us to define the AUROC as follows (as
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in [64]):

AUROC =

∫ 1

0

T (F−1(f0))df0 (4.7)

=

∫ 1

0

P (p̂(x) > F−1(f0) | y(x) = 1)df0 (4.8)

=

∫ 1

0

P (p̂(x) > F−1(F (τ)) | y(x) = 1)
∂F (τ)

∂τ
dτ (4.9)

=

∫ 1

0

P (p̂(x) > τ | y(x) = 1) · P (p̂(z) = τ | y(z) = 0)dτ (4.10)

=

∫ 1

0

P (p̂(x) > p̂(z)& p̂(z) = τ | y(x) = 1& y(z) = 0) (4.11)

= P (p̂(x) > p̂(z) | y(x) = 1& y(z) = 0) (4.12)

Problems with AUROC. One key disadvantage of the AUC score is that it can be

easier to get a high ROC score on highly imbalanced datasets [65]. Moreover, when class

imbalance is an issue, AUC doesn’t give us much of an idea of the precision of a classifier

(also known as the positive predictive value, which is the proportion of data points predicted

to have positive labels that actually have positive labels. Using similar notation to above,

precision is formally defined as:

precision =
TP

TP + FP
(4.13)

This is bad because a classifier can have a superb AUC score but fail to deliver any

actionable predictions on the data. Consider, for example, a case in which only 1% of our

data has positive labels (this is very reasonable for disease prediction tasks, in which the

prevalence of a disease in the training population can actually be much lower). Suppose

that for any threshold for which we have false negatives every data point correctly predicted

to be positive, there will exactly 9 false positives. We can therefore assume that the TPR

increases linearly as a function of the FPR. This means that to correctly label every positive
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Figure 4.2: ROC and PR curves calculated from same classifier with unbalanced data. ROC
curve looks very good for a classifier, but the precision and recall are very poor in practice.
ROC curve has AUROC = 0.955 while PR curve has AP 0.1. Note that the precision is
trivially 1 when recall is 0 because there are no points labeled as positive.

data point, we must simply look at the 10% of the data receiving the highest score. At this

cutoff, we will have a 100% true positive rate and a 9.1% false negative rate. An example

ROC curve is shown in Figure 4.2. It is easy show analytically that this curve will have an

AUC score of 0.955 (a very high score for disease prediction) despite never predicting more

than 1 in 10 cases correctly. These predictions aren’t particularly useful from the standpoint

of a medical provider since 90% of early intervention efforts would end up being wasted on

those who wouldn’t be diagnosed anyway. Accordingly, we discuss means of alleviating these

problems using precision-recall, as proposed in [65]

4.2 Precision-Recall (PR) Metrics

Precision, as defined in Equation 4.13, the proportion of entries predicted to be positive that

are actually positive. Recall is simply true positive rate — the total proportion of the positive

cases identified by a classifier. A precision-recall (PR) curve details the how accurately we

can predict true positives as a function of the proportion of true positives we identify. This is
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useful because it often better enables us to evaluate the practical usefulness of a classifier, for

which it is often more important to have accurate predictions than to predict every positive

case (i.e. in the case of allocating limited financial or medical resources)

Though the difference between comparing precision and recall instead of FPR and recall

(TPR) is subtle, the two can have very different results when evaluating a classifier, as noted

in [66]. Figure 4.2 shows ROC and PR curves for the same in classifier, used to classify

data with heavy class imbalance as described in Section 4.1.2. Some have proposed that

area under the precision-recall curve (AUPRC) is a better metric than ROC because it is

not as easily confounded by class imbalance [65]. In some cases, linear interpolation between

points on the PR curve can cause AUPRC estimates to be overly optimistic. Accordingly,

we calculate the closely related average precision (AP) of each of our classifiers instead of

the AUPRC. AP is defined as:

AP = Pn(Rn −Rn−1) (4.14)

Where Pi and Ri are the precision and recall for the ith threshold, respectively. We will

report both AP and AUROC for our classifiers for robustness and comparability with other

papers.
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Chapter 5. Experiments

We present a synopsis of an insurance claims dataset used for constructing embeddings and

for predicting future disease onset for five high-impact chronic diseases. We discuss general

strategies for data preparation that allow us to intelligently preprocess our data so that we

can test the usefulness of our embeddings in our disease prediction experiments without

“cheating” by accidentally encoding the desired predictions in the embeddings themselves.

5.1 Data

We compare the previously described embedding and disease prediction strategies using a

private insurance claims dataset consisting of 472,120 individuals. All individuals lived in a

large metropolitan area and were monitored between 2002 and 2010. All diagnoses are labeled

with ICD-9 diagnosis codes, with procedures labeled using CPT procedure codes. Insurance

claims data are structured such that each claim lists either a single filled prescription for

medication, or a single medical procedure performed and up to four diagnosis codes justifying

that procedure. Of the four diagnosis codes given, the first (primary) diagnosis is given as

a full code while the second through fourth (secondary) diagnoses are truncated at 4 digits.

This prevents us from identifying the exact ICD-9 code to which each corresponds, though

we can still get a good idea about the disease category each represents just by looking at

these digits.

Many of the individuals in our dataset received drug coverage through a third-party

provider, so we do not include drug codes in our analysis for uniformity across patients.

In addition to individual medical histories, our data also contains age and sex of each

patient as demographic info. We will incorporate this information to improve our modeling

performance. Basic summary statistics on our data are given in Table 5.1.

In our experiments, we will try to predict five diseases: Heart Failure (HF), Diabetes

Melitus type II (DM), Chronic Kidney Disease (CKD), Acute Myocardial Infarction (AMI),
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and Chronic Obstructive Pulmonary Disease (COPD). Each of these diseases was selected

for being both life-altering and preventable. We hope that being able to forecast the onset of

these diseases will allow medical practitioners, insurance providers, and individuals to take

measures to avoid the onset of these conditions.

In addition to medical history of each individual, we include age and sex as demographic

information to better improve our predictions.

Category
Number
Patients

All Patients 472,120
HF 2,336
DM 9,916
CKD 2,589
AMI 1,574
COPD 3,953

Mean Age 33

Table 5.1: Basic statistical and demographic characteristics of dataset

An individual was identified as positive for one of the above diseases if we observed two

or more codes corresponding to that disease in his or her medical record, as done in [2, 24].

Codes used to identify each disease are given in Table 5.2. We require at least two codes to

avoid false positives caused by medical coding errors. Individuals with exactly one code are

labeled as ambiguous and are dropped.

Disease ICD-9 Codes CPT Codes

HF
398.91, 402.*1, 404.*1,

404.*3, 428.*
None

AMI 410.* None
DM 250.*0, 250.*2 None

CKD
403.*, 404.*, 582.*, 583.*,
585.*, 586.*, 588.0, V56

90918, 90919, 9092*, 9093*,
9094*, 9095*, 9096*, 9097*,

9098*, 9099*
COPD 491.*, 492.*, 494.*, 496 None

Table 5.2: Diagnosis and procedure codes used to identify each disease. * indicates that
codes with any digit(s) in this place correspond to the disease in question. For CKD, all
CPT codes correspond to dialysis-related procedures.
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Due to the competitive nature of the insurance market, many individuals switch insurance

providers frequently as their employers seek to find ways to cut costs. As such, most of the

individuals in our dataset were not enrolled continuously during the nine period covered by

the data, but were enrolled for a subset of the years, sometimes with multi-year gaps in data

coverage.

These coverage gaps present a number of problems for our experiments. First, embedding

algorithms that expect continuous coverage could learn spurious patterns when trying to

predict a next visit across a large coverage gap. However, the ratio of coverage gaps to

total visits is small, thus we do not expect this to substantially bias our embedding results.

Second, one must adjust the normal retrospective cohort study methodology, which uses

fixed observation and prediction periods, to account for asynchronous enrollment. Failure

to do so would drastically limit the already small number of individuals in the sample with

each disease, increasing chances of overfitting and thereby limiting the generalizability of the

results.

To address this second problem, we align our patients by time of failure, as done in [67].

To do so, we sequentially parse through each patient’s history. Once we have observed two

codes corresponding to one of our diseases, we mark that individual as ”positive” for that

disease truncate that patient’s history after a random date between 30 and 365 days prior

to the onset of the given disease. While this requires us to create a separate dataset for each

disease, it ensures that we have sufficiently large populations in each to find interesting and

meaningful results.

For both sets of experiments, we use the same train-test-validation split of 60/20/20 to

prevent the embeddings from explicitly learning to encode sequential relationships in the

test data. We use the validation data for hyperparameter tuning and early stopping. When

we perform our disease prediction experiments, we will additionally remove all patients who

did not have at least one year of medical history in the observation period. Numbers of total

patients included in each prediction experiment are summarized in Table 5.1.
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5.2 Constructing and Evaluating Embeddings

5.2.1 Embedding Construction. In this section, we construct and qualitatively com-

pare three sets of embeddings for diagnosis and procedure codes. First, we naively construct

embeddings using only the sequence of codes (rather than temporal relationships) to define

co-occurrence. We refer to these as our naive embeddings. Second, we construct embeddings

using short-term temporal dependencies between codes. In this case, we define two codes as

co-occurring if they occur in the same visit (i.e. in the same day). This is reminiscent of

the means used in [2, 53, 32] to pre-train embeddings for neural networks. We refer to these

as short-term embeddings. Finally, we test whether accounting for long term temporal

relationships improves embedding quality, as noted in [46]. We refer to these as long-term

embeddings. A summary of the different co-occurrence definitions used to construct our

embeddings is given in Table 5.3.

Embedding Co-occurrence Definition

short-term
Codes occur in same visit

(i.e. on same day)

long-term
Codes occur within a
month of each other

Table 5.3: Summary of embedding types, as well as a metric of their consistency with known
medical ontologies.

In each case, we use GloVe [50] to train our embedding vectors, since it can be easily

adapted to use a temporal instead of sequential definition of co-occurrence and continues to

show near state-of-the-art performance on NLP tasks. As done in the GloVe paper, we drop

all codes that do not occur at least 10 times in our training dataset, since these can add

unnecessary noise to our model.

We construct all of our embeddings using only the 60% of our data designated for training.

We do this to ensure that when we later compare the effectiveness of the learned embeddings

in disease prediction, we do not inadvertently “cheat” by encoding data from the test or

validation sets in our embeddings.

44



5.2.2 Embedding Evaluation. We evaluate our embeddings in three ways:

(i) We perform a qualitative evaluation by looking at the nearest neighbors of key diag-

nosis codes and determining whether they align with published medical knowledge.

Based on the distributional hypothesis [45], codes that occur together frequently ought

to correspond to linked conditions. Specifically, we cluster our embeddings using vari-

ations of k-means clustering and then examine the contents of a few of these clusters

to get an idea of whether or not this assumption holds.

(ii) We test the embeddings in a variety of machine learning algorithms to see which can

best be aggregated together to predict future disease onset. This is discussed further

in Section 5.3.

Clustering and Qualitative Evaluation. Once we have obtained embeddings for our

data, we cluster our data using the K-Means algorithm. We find these clusters using the

following two methods:

(i) Let initial cluster centroids be the mean of the embedded vector representations for

each of the 278 CCS groups. This presents an intuitive choice for clusters, but also

fixes the number of clusters at 279, where the 279th cluster corresponds to oddball

procedures not related to a single diagnosis group, such as x-rays.

(ii) Choose initial centroids according to the k-means++ procedure described in [68] as

follows:

(a) Randomly choose the first centroid to be a point from the dataset to be clustered.

(b) For each successive centroid, pick xj to be the next centroid with probability

pj =
D(xj)

n∑

j=1
D(xj)

, where D(xj) is the distance from xj to the nearest centroid. This

step is repeated until k centroids have been chosen.

Clustering Results. Here, we qualitatively evaluate our clusters based on how well

each captures known disease comorbidities. In the absence of exhaustive data on known
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comorbidities, we heuristically assess both cluster validity and the presence of comorbidities

by inspecting a few key clusters element-by-element to determine whether each data point is

actually related to the main theme of the cluster. We plot a few 2-dimensional projections

of our clusters in Figure 5.1

To illustrate how this procedure works, consider the cluster containing the diagnosis

code for advanced chronic kidney disease, known as end-stage renal disease (ESRD). Once

an individual enters end-stage kidney disease, his or her kidneys have lost so much function

that dialysis is required multiple times a week to properly filter toxins from the blood. Worse,

chronic kidney disease is irreversible, so individuals in end-stage must either receive a kidney

transplant or receive dialysis for the rest of their lives. Thus, we would expect codes in our

ESRD cluster to be related to advanced kidney damage, dialysis, kidney transplants, and

associated conditions.

Table 5.4 contains a reasonably representative subset of the codes contained in our ESRD

cluster. It is readily apparent that entries 1, 3, 5, 7, 8, 9, and 10 correspond directly

to renal problems, as expected. Entry 2, malnutrition, is also commonly associated with

ESRD because dialysis and associated chronic inflammation can cause patients to suffer from

protein-energy malnutrition, which occurs when patients either have insufficient calories or

protein to meet their metabolic needs [69]. Similarly, osteomalacia (entry 6) is softening of

the bones caused by lack of vitamin D, the metabolism of which is impeded by kidney disease

[70]. Moreover, chromosome anomalies (entry 4) have been identified as risk factors for

chronic kidney disease [71] and intracranial hemorrhage has been associated with polycystic

kidney disease [72]. Finally, cytotoxic panel-reactive antibody screenings (entry 12) are

performed on individuals awaiting organ (i.e. kidney) donation to assess the compatibility

of an organ transplant from a prospective donor. Thus we see that each of the codes we

investigated from our ESRD cluster is closely linked to ESRD, which lends strength to

the hypothesis that clusterings could be useful in identifying disease comorbidities. We

further see that our combining clustering with our embeddings is able to capture relationships
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Figure 5.1: Projections of our clusters using t-SNE, linear discriminant analysis, and princi-
pal components.
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End-Stage Renal Disease Related Code Code
Type

CCS
Group

1 Hemodialysis procedure requiring repeated evaluation(s) with
or without substantial revision of dialysis prescription

Procedure 58

2 Malnutrition of moderate degree Diagnosis 52
3 renal dialysis status Diagnosis 158
4 Conditions due to anomaly of unspecified chromosome Diagnosis 217
5 End-stage renal disease (ESRD) related services per full

month; for patients twenty years of age and older
Procedure 58

6 Osteomalacia, unspecified Diagnosis 52
7 Renal osteodystrophy Diagnosis 161
8 End-stage renal disease (ESRD) related services monthly, for

patients 20 years of age and older; with 4 or more face-to-face
physician visits per month

Procedure 227

9 Secondary hyperparathyroidism (of renal origin) Diagnosis 161
10 Encounter for extracorporeal dialysis Diagnosis 158
11 Other and unspecified intracranial hemorrhage following in-

jury without mention of open intracranial wound, with no loss
of consciousness

Diagnosis 233

12 Serum screening for cytotoxic percent reactive antibody
(PRA); standard method

Procedure 235

Table 5.4: Subset diagnoses and procedures contained in cluster corresponding to end-stage
renal disease. Note that more than half of these conditions explicitly relate to renal problems
or dialysis.

between diagnoses and procedures not captured in CCS groupings alone, as can be seen by

the diversity of CCS groupings in table 5.4.

We note that while the results of clustering around ESRD are promising, other diagnoses

exhibit worse results. Burns, for example, are clustered together with insect bites, presum-

ably because both deal with skin irritation and blistering. In spite of this, we believe that

our clusters could be a useful tool because we would expect chronic diseases (e.g. kidney

disease) to show more consistent, long-term patterns of comorbidities than incidental injuries

(e.g. burns). A broader, more systematic exploration of these patterns is a potential area of

future research.

Nearest Neighbors. In addition to looking at clusters, we check that the nearest neigh-

bors of codes align with medical knowledge. The nearest neighbors to a ESRD and social
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phobia are shown in few common diseases shown in Tables 5.5 and 5.6.

End Stage Renal Disease Nearest Neighbors Code
Type

1 Hemodialysis procedure with single physician evaluation Procedure
2 chronic renal failure Diagnosis
3 End-stage renal disease (ESRD) related services monthly, for pa-

tients 20 years of age and older; with 4 or more face-to-face physi-
cian visits per month

Procedure

4 Impaired renal function with necrosis Diagnosis
5 End-stage renal disease (ESRD) related services monthly, for pa-

tients 20 years of age and older; with 2-3 face-to-face physician
visits per month

Procedure

6 Renal failure, unspecified Diagnosis
7 Hypertensive chronic kidney disease - Unspecified Diagnosis
8 Chronic kidney disease, unspecified Diagnosis
9 Hypertensive chronic kidney disease, unspecified, with chronic kid-

ney disease stage V or end stage renal disease
Diagnosis

10 End-stage renal disease (ESRD) related services per full month; for
patients twenty years of age and older

Procedure

Table 5.5: Nearest neighbors of End Stage Renal Disease given by embedded points. Note
that all related conditions correspond to renal (kidney) failure or associated treatments

Social Phobia Nearest Neighbors Code
Type

1 Posttraumatic stress disorder Diagnosis
2 Major depressive affective disorder, recurrent episode, mild Diagnosis
3 Unspecified personality disorder Diagnosis
4 Adjustment disorder with anxiety Diagnosis
5 Individual psychotherapy, insight oriented, behavior modifying

and/or supportive, in an office or outpatient facility, approximately
20 to 30 minutes face-to-face with the patient

Procedure

6 Other occupational circumstances or maladjustment Diagnosis
7 Other bipolar disorders Diagnosis
8 Bipolar I disorder, most recent episode (or current) depressed, mod-

erate
Diagnosis

9 Gambling and betting Diagnosis
10 Psychic factors associated with diseases classified elsewhere Diagnosis

Table 5.6: Nearest neighbors of Social Phobia in embedded data. Note that all 10 neighbors
are related to psychological conditions
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5.3 Individual Disease Prediction

Once we have split, cleaned, labeled, and embedded our data, we are ready to compare

a variety of disease prediction models to determine both which models can best capture

patterns of disease progression and which embeddings can best encode disease relationships

related to a patient’s medical future. We align our patients by time of disease onset and

restrict each patient to have exactly one year of data in the observation period as discussed

in Section 5.1. We select parameters for each of our models based on which performs best

on a grid parameter grid search evaluated on holdout validation data. We search over the

following parameters for each model:

• Logistic Regression:

– Regularization: {L1, L2}

– C (Regularization Weight): {0.01, 0.1, 1, 10, 100}

• Random Forest:

– Number of Trees: {100, 200, 400}

– Max Depth: {3, 6, 9}

– Min Samples per Leaf: {2, 8, 32}

– Decision Rule: {Gini, CrossEntropy}

• XGBoost:

– Number of Trees: {100, 200, 400}

– Learning Rate: {0.01, 0.1, 1}

– Max Depth: {3, 6, 9}

– Proportion of Columns per Tree: {.1, .2, .4}

• LightGBM:
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– Number of Trees: {100, 200, 400}

– Learning Rate: {0.01, 0.1, 1}

– Max Depth: {3, 6, 9}

– Proportion of Columns per Tree: {.1, .2, .4}

– Boosting Algorithm: {GBM,DART}

• RNN:

– RNN State Regularization Weight: {.001, 0.01, .01}

– RNN State Size: {128, 256}

– Fully-Connected Layer Size: {256, 512}

(a) ROC curve for type II diabetes. (b) PR curve for type II diabetes.

Figure 5.2

In addition to the parameter grid search, we compensate for our class imbalance by

upweighting the disease class to have the same total weight as the healthy class for LR, RF,

XGB, and LGBM. We address class imbalance for our RNN by sampling training batches to

have a 1:1 healthy:sick ratio for training.

In order to get metrics on how well non-RNN algorithms can learn on embedded claims

sequences, we aggregate each by summing together the embeddings of claims occurring in the
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observation period, weighting each by the frequency that its code appeared in the individual’s

claims during that time. RNNs are fed sequential visits, where each visit is represented by

a multi-hot vector of the codes it contained.

Once we have selected our best models using validation data, we evaluate each on our test

dataset and obtain ROC and PR curves for each. We also calculate AUROC and AUPRC

scores for each, recorded in Tables 5.7 and 5.8, respectively. We plot ROC and PR curves

for DM in Figure 5.2 and leave the rest to the appendix.

Model HF DM CKD AMI COPD

LR+Raw .5500 .6925 .5561 .5908 .5670
LR+Short-Term .8794 .8195 .8424 .8676 .7989
LR+Long-Term .8818 .8280 .8442 .8626 .8014

RF+Raw .8594 .8224 .8321 .8281 .7836
RF+Short-Term .8631 .8097 .8280 .8474 .7765
RF+Long-Term .8762 .8127 .8359 .8498 .7797

XGB+Raw .8056 .8408 .7769 .7982 .7631
XGB+Short-

Term
.8614 .8030 .8105 .8425 .7645

XGB+Long-
Term

.8714 .8083 .8294 .8326 .7576

LGBM+Raw .8778 .8568 .8416 .8483 .8093
LGBM+Short-

Term
.8773 .8221 .8408 .8632 .7998

LGBM+Long-
Term

.8863 .8261 .8368 .8607 .8010

LSTM+Raw .8309 .7659 .7916 .8437 .7643
LSTM+Short-

Term
.8899 .7681 .8469 .8456 .7609

LSTM+Long-
Term

.8894 .7743 .8518 .8486 .7606

Table 5.7: AUROC scores from disease prediction experiments.

Despite the emphasis on RNNs in recent disease prediction literature, LSTMs did not con-

sistently outperform simpler baseline models like LGBM or even logistic regression. LSTMs

never have the highest AP for any disease and only win on 2 of 5 diseases with AUROC. These

simpler models are both faster and more interpretable than LSTMs, and should therefore

not be discarded in disease prediction tasks. We do note that learned embeddings substan-
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Model HF DM CKD AMI COPD

LR+Raw .0288 .1330 .0237 .0156 .0377
LR+Short-Term .1052 .1552 .0705 .0338 .0649
LR+Long-Term .1006 .1692 .0662 .0343 .0636

RF+Raw .0559 .2392 .0526 .0236 .0560
RF+Short-Term .0588 .1795 .0548 .0279 .0516
RF+Long-Term .0687 .1893 .0551 .0296 .0543

XGB+Raw .0704 .3297 .0648 .0233 .0647
XGB+Short-

Term
.0664 .1898 .0639 .0296 .0429

XGB+Long-
Term

.0766 .2101 .0669 .0291 .0454

LGBM+Raw .0780 .3080 .0625 .0336 .0733
LGBM+Short-

Term
.0769 .1801 .0562 .0388 .0641

LGBM+Long-
Term

.0884 .2045 .0612 .0331 .0635

LSTM+Raw .0452 .0940 .0285 .0228 .0432
LSTM+Short-

Term
.0823 .0943 .0544 .0219 .0393

LSTM+Long-
Term

.0779 .0977 .0639 .0236 .0392

Table 5.8: AUPRC scores from disease prediction experiments.

tially improved the performance of logistic regression models, indicating that embeddings do

learn meaningful disease features that can be captured by linear models without significant

post-processing.
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Appendix A. ROC and PR Curves for other

diseases

(a) ROC curve for heart failure. (b) PR curve for heart failure.

(a) ROC curve for chronic kidney disease. (b) PR curve for chronic kidney disease.
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(a) ROC curve for acute myocardial infarc-
tion (heart attack).

(b) PR curve for acute myocardial infarction
(heart attack).

(a) ROC curve for chronic obstructive pul-
monary disease.

(b) PR curve for chronic obstructive pul-
monary disease.
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