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Simple Summary: Given the prevalence of COVID-19 infection, assessment of sequelae is critical to
public health. Recent studies revealed a higher incidence of resistant hypertension after COVID-19
recovery. Presently, there is limited data and ability to clinically ascribe mechanisms using
traditional techniques. Literature-based discovery (LBD) leverages artificial intelligence to stitch
together multi-scalar relationships from millions of journal articles. Identified related concepts
are ranked according to their predicted relevance in ascribing the shared etiology of hypertension
and COVID-19. The dominant LBD-identified ascribed physiology included: altered endocrine
function, inflammation, lipid dysfunction, altered nerve input for blood pressure, and altered
COVID-19 viral entry.

Abstract: Multiple studies have reported new or exacerbated persistent or resistant hypertension
in patients previously infected with COVID-19. We used literature-based discovery to identify and
prioritize multi-scalar explanatory biology that relates resistant hypertension to COVID-19. Cross-
domain text mining of 33+ million PubMed articles within a comprehensive knowledge graph was
performed using SemNet 2.0. Unsupervised rank aggregation determined which concepts were
most relevant utilizing the normalized HeteSim score. A series of simulations identified concepts
directly related to COVID-19 and resistant hypertension or connected via one of three renin–
angiotensin–aldosterone system hub nodes (mineralocorticoid receptor, epithelial sodium channel,
angiotensin I receptor). The top-ranking concepts relating COVID-19 to resistant hypertension
included: cGMP-dependent protein kinase II, MAP3K1, haspin, ral guanine nucleotide exchange
factor, N-(3-Oxododecanoyl)-L-homoserine lactone, aspartic endopeptidases, metabotropic gluta-
mate receptors, choline-phosphate cytidylyltransferase, protein tyrosine phosphatase, tat genes,
MAP3K10, uridine kinase, dicer enzyme, CMD1B, USP17L2, FLNA, exportin 5, somatotropin
releasing hormone, beta-melanocyte stimulating hormone, pegylated leptin, beta-lipoprotein,
corticotropin, growth hormone-releasing peptide 2, pro-opiomelanocortin, alpha-melanocyte stim-
ulating hormone, prolactin, thyroid hormone, poly-beta-hydroxybutyrate depolymerase, CR 1392,
BCR-ABL fusion gene, high density lipoprotein sphingomyelin, pregnancy-associated murine
protein 1, recQ4 helicase, immunoglobulin heavy chain variable domain, aglycotransferrin, host
cell factor C1, ATP6V0D1, imipramine demethylase, TRIM40, H3C2 gene, COL1A1+COL1A2
gene, QARS gene, VPS54, TPM2, MPST, EXOSC2, ribosomal protein S10, TAP-144, gonadotropins,
human gonadotropin releasing hormone 1, beta-lipotropin, octreotide, salmon calcitonin, des-
n-octanoyl ghrelin, liraglutide, gastrins. Concepts were mapped to six physiological themes:
altered endocrine function, 23.1%; inflammation or cytokine storm, 21.3%; lipid metabolism and
atherosclerosis, 17.6%; sympathetic input to blood pressure regulation, 16.7%; altered entry of
COVID-19 virus, 14.8%; and unknown, 6.5%.
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1. Introduction

COVID-19 typically results in a mild–moderate respiratory illness. However, pa-
tients with underlying conditions or certain predispositions typically face more severe
illness, and oftentimes, hospitalization [1]. Even during the height of the SARS-CoV-2
(i.e., COVID-19) pandemic, cardiovascular disease (CVD) had a greater mortality than
the COVID-19 virus [2]. With more time to focus on the longer-term and broader effects
of COVID-19 since the pandemic’s onset, recent literature indicates that cardiovascular
complications are prevalent during and following COVID-19 infection [2]. Further, patient
populations with pre-existing CVD or CVD risk factors experience worse disease out-
comes [3,4]. Documented CVD adverse events during active COVID-19 infection and/or
recovery include myocarditis, acute myocardial infarction, cardiomyopathy, arrythmias,
and resistant hypertension [2].

There are many etiological questions that remain as to how COVID-19 intersects with
CVD. The etiology of acute COVID-19 CVD adverse events like myocarditis [5], an inflam-
mation of the heart valves often associated with viral infection, is more straightforward.
However, the causes of chronic resistant hypertension after COVID-19 are less clear. Resis-
tant hypertension is defined as abnormally high blood pressure that remains unrepressed
under the treatment of at least three separate antihypertensive drugs [6]. Resistant hy-
pertension is reported to be a significant predictor of fatalities in hospitalized COVID-19
patients compared to regulated hypertension [6,7]. While ample research has highlighted
the hypertensive properties of COVID-19, little is known about the underlying mecha-
nisms that explain potential interplay between COVID-19 and new onset or exacerbated
resistant hypertension.

A recent clinical study reported that between 10% and 14% of adult COVID-19 patients
will develop new onset or worsened hypertension after COVID-19 recovery, typically about
2 months after their initial COVID-19 infection [8]. Another large study with 45,398 COVID-
19 patients and 13,864 influenza patients found that new-onset, persistent hypertension
was 21% in COVID-19 compared to 16% with influenza at approximately 6 months after
initial infection [9]. The study by Zhang and colleagues examined the odds ratio and
95% confidence interval from developing persistent hypertension after infection. Hospi-
talized patients with COVID-19 were 2.23 times ([95%, 1.48–3.54]; p < 0.001) more likely
and non-hospitalized patients with COVID-19 were 1.52 ([95% CI, 1.22–1.90]; p < 0.01)
times more likely to develop persistent hypertension compared to those with influenza [9].
These findings indicate that viral infection increases risk of hypertension, but the risk is
particularly worse with COVID-19 compared to other infections. Another clinical study
with 366 hospitalized COVID-19 patients founds hypertension was a sequela to infection;
190 patients with previous hypertension had a significantly increased level of angiotensin
II, procalcitonin, and cTnl [10]. In addition to hypertension, other related sequela reported
after COVID-19 infection include dyslipidemia and diabetes [11]. In short, multiple stud-
ies have identified the presence of existing and new onset persistent and/or resistant
hypertension both during COVID-19 and several months after initial infection recovery.

Prior work has identified and linked COVID-19 with the angiotensin II-converting en-
zyme receptor (ACE2 receptor), which serves as the main entry point for viral infection [12].
Interactions of the SAR-CoV-2 virus with ACE2 receptor expression within the lungs leads
to acute respiratory disease and other respiratory complications, such as difficulty breath-
ing. Further, ACE2 expression has been documented across various cell types and organs
outside the lungs. Thus, it is widely hypothesized that the severe and widespread impact
of COVID-19 within the body is a direct result of viral interactions with ACE2 receptor
expressing cells [1]. Notably, ACE2 is part of the renin–angiotensin–aldosterone system
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(RAAS), which is key for blood pressure regulation [13]. Renin, angiotensin, and aldos-
terone elevate arterial pressure in response to decreased renal blood pressure, salt delivery
to the distal convoluted tubule, and beta-agonism [14]. Angiotensin-converting enzyme
(ACE) inhibitors are a common therapy for treating hypertension. ACE inhibitors suppress
an enzyme that is required to produce angiotensin II, which is associated with narrowing
of blood vessels [13]. Epithelial sodium channels are another component of the RAAS
pathway and are responsible for sodium reuptake. Epithelial sodium channels have also
been shown to be affected by COVID-19 [15].

Presently, there has been little research performed to ascribe the potential causal
links between COVID-19 and resistant hypertension. Most studies have examined clinical
associations and not deeper, multi-scalar biology. Assessment of the etiology of resistant
hypertension and COVID-19 warrants a cross-domain, interdisciplinary perspective. New
advanced tools allow the scientific field to rapidly discover and publish data. There is
great opportunity to leverage the current published literature to provide the cross-domain
perspective necessary to answer complex questions that are not easily answered using
more traditional techniques. Text mining is one of the few techniques that enables holistic
examination of multi-scalar and multifactorial relationships across all domains. Literature-
based discovery (LBD) has long held promise since it was first utilized to identify that
fish oil, which is hypothesized to reduce blood viscosity, is a good therapy for Raynaud’s
phenomenon [16]. Recent algorithmic advances have enabled more wide-scale utilization
of LBD in biomedical science for drug repurposing, risk assessment, question answering,
and research prioritization [17].

The presented work examines the relationship(s) between COVID-19 and resistant
hypertension using LBD. Artificial-intelligence-based LBD enables examination of mil-
lions of journal articles to aggregate knowledge in a comprehensive, less biased manner
compared to traditional systematic reviews. Due to the inherent limits of manual human
review of articles, traditional systematic reviews comparatively include only a very tiny
fraction of articles, typically around 100-200 articles, which are restricted to the immediate
domain of interest instead of incorporating cross-domain connections. As such, traditional
human-based systematic reviews are likely to result in a more narrow and unintentionally
biased review. As such, traditional systematic reviews would most likely be presently
inferior for exploring more distant, lesser understood etiological relationships between
COVID-19 and resistant hypertension.

The SemNet family [18,19] of LBD tools extract semantic relationships from the text of
all the articles in the PubMed database. Biomedical concepts (e.g., nodes) and relationships
(e.g., edges) are stitched together into a comprehensive knowledge graph. Metapaths
specify the pattern of relationships between user-specified biomedical concepts of interest,
called target nodes, and related biomedical concepts in the graph, called source nodes [18].
The simplest metapath structure is concept→ relationship→ concept, such as COVID-19
→ causes→ hypertension. Unsupervised rank aggregation is used to compare metapaths
and rank the importance of related source nodes using a relevance-based metric called a
HeteSim score [18]. Degree-weighted path counts are utilized to minimize the occurrence
of overly common metapaths from being predicted as more important simply because they
are more prevalent in the literature [18,19].

LBD with the SemNet family of tools [18,19] has already succeeded in identifying
and ranking both existing and novel or under-studied relationships. SemNet with link
prediction was able to successfully forecast repurposed drugs for COVID-19 [20]. More than
40% of the predicted repurposed drugs for COVID-19 went on to be clinically validated as
COVID-19-adjuvant therapies [21]. SemNet 2.0 [18] (the latest version of SemNet at the time
of this writing) with cross-domain text mining was utilized to forecast long-term adverse
events from chronic tyrosine kinase inhibitor therapy for chronic myeloid leukemia [22].
Additionally, SemNet 2.0 has been used to highlight the promise of antihistamines as a
prioritized adjuvant therapy with levodopa derivatives in the treatment of Parkinson’s Dis-
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ease [23]. In short, LBD with SemNet provides a comprehensive method for exploring and
prioritizing biomedical concepts of interest for future experimental or clinical validation.

Here the SemNet 2.0 software [18] was utilized to query a knowledge graph of biomed-
ical concepts generated from 33+ million PubMed articles. The algorithm identified and
ranked relevant concepts that represent direct or indirect connections between COVID-
19 and resistant hypertension. Furthermore, a unique cross-domain serial SemNet 2.0
simulation method [22] using identified hub nodes combed relationships from cardiol-
ogy, neurology, oncology, and numerous other domains to unearth possible etiological
connections that may otherwise go unseen. Much akin to hub node network analysis in
bioinformatics [24], hub nodes are selected during cross-domain text mining to formulate
a series of simulations that are more expansive and can extend analysis to lesser-studied
relationships [22]. As such, cross-domain text mining and hub network analysis with
SemNet 2.0 [18] identifies more distant or under-studied relationships than traditionally
possible with LBD. In summary, cross-domain text mining and hub node analysis with
SemNet 2.0 elucidated, synthesized, and prioritized key multi-scalar and multifactorial
concepts that explain the connection(s) between COVID-19 and resistant hypertension.

2. Materials and Methods

LBD uses existing, published literature and extracts relationships from it. Data that are
already published inform connections between concepts that have not yet been explicitly
linked. LBD methods enable experts of the biomedical community to cross-link domains of
work and navigate the expanse of data that are available in a more feasible way [25]. In this
work, LBD, and specifically SemNet 2.0, was utilized to support the extraction and ranking
of biological relationships between COVID-19 and resistant hypertension.

2.1. Overview of SemNet 2.0 Software for Literature-Based Discovery

SemNet is a heterogenous knowledge graph generated by text mining of 33+ million
published journal articles from PubMed. The database contains subject–predicate–object
triplets where the subject and object are biomedical concepts, and the predicate is a re-
lationship between those concepts [18,19]. For example, a triplet within the data may
be aldosterone → increases → blood pressure. SemNet 2.0 generates a heterogeneous
information network where nodes represent biomedical concepts and edges represent the
relationships between nodes. Nodes and edges are encoded using the Unified Medical
Language System (UMLS) ontology [18,19].

Queries are performed on the graph to examine how concepts within the graph are
interconnected to a set of specific target nodes. Target nodes are user-defined UMLS
nodes. Target node selection is typically guided by domain expertise to answer a specific
hypothesis. Query results consist of source nodes, which are nodes that share a connection
with the target node(s). The list of nodes and edges that connect the target node to a source
node is denoted as a metapath. The length of a metapath is a controllable parameter of
a SemNet query. Other parameters include the following: (1) specifying returned UMLS
source node types; (2) specifying the source node search depth. Examples of common
UMLS node types include the following: gene or genome (GNGN), amino acid; peptide
or protein (AAPP); hormone (HORM); pharmacological substance (PHSU); disease or
syndrome (DSYN). The search depth specifies how many connections away from the target
node the algorithm will search for connected source nodes [18,19]. Specifying the UMLS
source node type(s) and simulation search depth makes the simulation computationally
tractable and ensures the results best answer the question(s) posed by the SemNet 2.0
literature search.

SemNet queries return the list of ranked source nodes connected between target
nodes. Each source node can have many metapaths connecting it back to the target
node(s) [18]. SemNet ranks the returned source nodes using an unsupervised learning
rank aggregation algorithm [18,19]. An unsupervised methodology looks for otherwise
hidden patterns in unlabeled data. The revised unsupervised learning algorithm for rank
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aggregation (ULARA) algorithm in SemNet 2.0 uses a majority voting process that considers
all metapaths and then predicts which ones are most relevant to the target [18]. The results
of SemNet simulations include the returned source nodes from the queried knowledge
graph and their corresponding HeteSim relevance scores. The HeteSim score measures the
relevance of the source nodes by evaluating the metapaths between the target node and
source node [18].

One known issue with LBD ranking algorithms is that they tend to overweight more
general or commonly cited relationships that occur across multiple journal articles. For
this reason, degree-weighted path counts are used to essentially down-sample such re-
lationships so that they do not overly influence the returned source node ranking. The
mathematics for this process has been previously described [18]. The revised ULARA pro-
cess was rigorously tested and validated in the original study presenting SemNet 2.0 [18].
Yet, some upweighting of common, highly connected nodes remains unavoidable to some
extent and must be considered when visually inspecting results. Further limitations of the
methodology are discussed in Section 4.4.

Finally, once SemNet results are generated, they must be evaluated. Because SemNet
2.0 utilizes an unsupervised approach for ranking, there is no ground truth. That is, just
like in all unsupervised models, there are no positively or negatively labeled data used to
train the model and to test and independently validate its results. Nonetheless, stand-in
evaluation of SemNet 2.0 results can be performed in one of three ways. First, it can be
performed by manual inspection of a known subset of relationships by human domain
experts, as was carried out when examining historical SARS [20]. Second, highly ranked
source nodes that are clinically known to be important and that reappear across multiple
serial simulations can be used to set a threshold of the minimum HeteSim score to be
“important”, as was done in a study for Parkinson’s Disease [23]. The third approach,
which is best for exploration, is to simply examine a set number of top k hits across each
series of simulations as a means of prioritizing top-ranked results. The top k hits approach
was utilized for the present study, as described in Section 2.5.

2.2. Hub Network Analysis for Deeper, Cross-Domain Text Mining

With millions of combinations of nodes comprising metapaths, it is computationally
intractable to specify a large search depth in the knowledge graph. The typical search
depth for a single simulation is n = 2 [18,19]. For this reason, hub network analysis is
performed to enable examination of more distant cross-domain source nodes that could
be very relevant to the specified target node(s) [22,23]. Hub network analysis utilizes
highly ranked and well-connected source nodes returned from the initial search as target
nodes for a subsequent series of SemNet 2.0 simulations. Figure 1 illustrates hub network
analysis using a smaller, toy network for ease of conceptual understanding. Hub network
analysis effectively extends the simulation search depth in areas of the graph most likely to
return highly relevant cross-domain source nodes [22,23]. Because multiple simulations are
performed as part of hub network analysis, the resultant HeteSim scores are normalized.
HeteSim score normalization enables comparisons of highly ranked nodes across multiple
simulations that have varying numbers of source nodes and metapaths. Details on the
selection of specific hub nodes is discussed in Section 2.4.

2.3. Analysis Architecture and Simulation Parameters

The initial hypothesis was that participants of the RAAS pathway could be key can-
didates of interaction with COVID-19. Notably, resistant hypertension is the main conse-
quence of over-stimulation of the RAAS pathway [26]. Simulations were designed to reveal
important biological links between COVID-19 and resistant hypertension that may better
explain their clinical connection.
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Figure 1. Explanation of how hub network analysis extends cross-domain text mining in SemNet 2.0.
T1 and T2 represent two user-specified target nodes. Due to the computational complexity, the
typical SemNet 2.0 knowledge graph search depth is n = 2 from the target node(s). The grey nodes
represent more sparsely connected source nodes returned at a search depth of 2 from either T1 or
T2. The nodes shown in red are the hub nodes, which are nodes that have a connection to the target
at n = 2, but also have a large number of total connections to other source nodes. The utilization
of hub nodes as user-specified targets for subsequent analysis effectively expands the search depth
in a computationally tractable manner. Finally, the connection line width visually represents the
connection frequency within the literature. Note the figure illustrates a much smaller example
network to simplify conceptual explanation. The real literature network has millions of nodes and
relationships, which are intractable to the human eye.

Figure 2 illustrates the flow diagram for the analyses performed. First, simulations
surrounding COVID-19 (A6) and resistant hypertension (A5) were performed to reveal ini-
tial relevant source nodes. Second, the intersection of simulations A5 and A6 were utilized
to get a list of high-ranking nodes related to both COVID-19 and resistant hypertension.
A4 consisted of the analytical identification of three high-ranking “hub nodes” by filtering
the A5–A6 intersecting source nodes by their normalized HeteSim score and metapath
prevalence. A4 was used to select three hub nodes that are part of the RAAS pathway and
have relationships to COVID-19: mineralocorticoid receptor epithelial sodium channels;
AT1 receptor. Finally, separate simulations were performed to examine biological links
between COVID-19 and each hub node: A1 examined relationships between COVID-19 and
mineralocorticoid receptor; A2 examined relationships between COVID-19 and epithelial
sodium channels; A3 examined relationships between COVID-19 and the AT1 receptor.

SemNet 2.0 utilizes the user-specified target nodes to identify relevant, related source
nodes. The returned source node types were initially limited to the following UMLS node
types: amino acids, peptides, and proteins (AAPP); hormones (HORM); and genes or
genomes (GNGM). Proteins and hormones are typical components of a signaling pathway
and are more likely to interact with a virus from a cell physiology standpoint. Genes
or genomes were included to reveal any relationships pertaining to gene regulation by
proteins. Other source node types, like social demographics or lab devices, likely would
not reveal the etiology of COVID-19 to the desired biological specificity and were excluded.
Table 1 summarizes the simulation input and output.
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Figure 2. Flow diagram for the major analyses, denoted by “A”, performed to identify the biological
links between COVID-19 and resistant hypertension. The analysis pipeline flows from top to bottom.
Simulations were performed in SemNet 2.0. First, separate simulations were performed to identify
high-ranking source nodes for resistant hypertension (A5) and COVID-19 (A6). Next, for A4, the
high-ranking intersecting source nodes with prevalent metapaths were filtered to identify hub nodes.
Hub nodes were selected from A4 to perform hub network analysis, which enabled cross-domain
text mining of deeper relationships to COVID-19. Three hubs became target nodes for subsequent
searches: mineralocorticoid receptor, epithelial sodium channels, and angiotensin type I (AT1)
receptors. Separate simulations were run with each hub node (A1 for mineralocorticoid receptor, A2
for epithelial sodium channels, and A3 for AT1 receptors) to identify relationships between each hub
and COVID-19. Finally, the intersection of A1, A2, and A3 was filtered and sorted in descending
order by the source node’s ranking to hub nodes most related to COVID-19.
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Table 1. Summary of analysis set-up using SemNet 2.0 to perform cross-domain text mining to
elucidate relationships between COVID-19 and resistant hypertension. ID is the analysis name,
Analysis Deliverable summarizes the analysis output, and Target Nodes with CUI describes the
input of the analysis. Target nodes are the user-specified input into SemNet 2.0, which returns
rankings for the related source nodes. Source nodes were limited to the following Unified Medical
Language System (UMLS) node types: amino acids, peptides, and proteins (AAPP); hormones
(HORM); and genes or genomes (GNGM). The listed target node CUI is the corresponding UMLS
concept unique identifier.

ID Analysis Deliverable Target Node(s) with CUI

A6 Source nodes related to COVID-19 COVID-19 (C5203670)
A5 Source nodes related to resistant hypertension Resistant hypertension (C0745130)

A4
Intersection of high-ranking A5 and A6 source

nodes to determine hub nodes for
cross-domain analysis in A1, A2, A3

COVID-19 (C5203670);
resistant hypertension (C0745130)

A3 Relationship of AT1 receptor (a RAAS hub
node) with COVID-19

AT1 receptor (C0529330);
COVID-19 (C5203670)

A2 Relationships of epithelial sodium channel
(a RAAS hub node) and COVID-19

Epithelial sodium channel
(C0384156); COVID-19 (C5203670)

A1 Relationships of mineralocorticoid receptor
(a RAAS hub node) with COVID-19

Mineralocorticoid receptor
(C0066563); COVID-19 (C5203670)

2.4. Justification for Target Node and Hub Node Selection

Given the primary goal of the work was to identify biological links between COVID-
19 and resistant hypertension, “COVID-19” and “resistant hypertension” were selected
for initial simulations in SemNet 2.0. Each concept had its own UMLS concept unique
identifier (CUI) and became a target node for its corresponding simulation: A5 for resistant
hypertension and A6 for COVID-19.

The underlying connections between COVID-19 and resistant hypertension are not
well studied. As such, examining only existing literature that directly specifies a relationship
between these two nodes at a search depth of n = 2 would be limiting. To provide greater
context, A4 filtered the intersection of COVID-19 and resistant hypertension to obtain hubs
for a new list of target nodes that allowed deeper exploration of less explicit literature
relationships between COVID-19 and resistant hypertension. Each of the three selected
hubs were part of the RAAS pathway. Again, RAAS is a critical blood and systematic
vascular resistance regulator. It performs blood pressure regulation by modulating blood
volume, sodium reabsorption, potassium secretion, water reabsorption, and vascular
tone [14,27]. Each selected hub node (mineralocorticoid receptor, epithelial sodium channel,
and angiotensin I receptor) was set as a target node, along with COVID-19, for analyses A1,
A2, and A3, respectively.

A1 examined links between COVID-19 and the mineralocorticoid receptor. Mineralo-
corticoid receptors regulate blood pressure and maintain fluid homeostasis [28]. Aldos-
terone in the physiological ligand of the mineralocorticoid receptor [29]. Certain types of
mineralocorticoid receptors also have antiandrogenic properties, and studies have impli-
cated their potential effect on lowering the severity of SARS-CoV-2 infection [30].

A2 examined links between COVID-19 with the epithelial sodium channel. Epithelial
sodium channels are responsible for absorbing sodium ions in the kidney and have similar
functionality in the airway. Controlling sodium ions in the body is vital for maintaining
homeostasis in blood pressure [31]. The RAAS pathway ensures the blood pressure stays
within the healthy range by stimulating sodium reabsorption (i.e., activating epithelial
sodium channels) [32]. Some studies have shown that the SARS-CoV-2 spike protein can
decrease the epithelial sodium channel activity [15].

A3 examined COVID-19 with the angiotensin type I receptor (AT1). The AT1 recep-
tor is a key receptor in the RAAS pathway. It promotes various intracellular signaling
pathways resulting in hypertension, endothelial dysfunction, vascular remodeling, and
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end-organ damage [33]. Octapeptide angiotensin II acts on AT1 receptors, causing vasocon-
striction, apoptosis, and proinflammatory effects, which can significantly affect COVID-19
patients [34].

2.5. Validation of Results and Determination of Themes

As noted in Section 2.1, there are three ways to evaluate SemNet 2.0 LBD results. In
the present exploratory study, there was not an upfront clinical consensus that could be
utilized to select the rankings of specific source node candidates as a threshold for what
concepts are most important. Thus, we instead elected to utilize the top k hits approach, or
more specifically, the top 10 hits. The top 10 candidates are reported for each source node
type after analyses have been normalized. Further, the reported top 10 candidates for each
analysis are then manually inspected by reviewing the full text literature. Utilizing the top
10 hits from the LBD simulations fulfills the objective of providing a reasonably sized list
of prioritized multi-scalar biological concepts that could explain the clinical associations
documented between COVID-19 and resistant hypertension.

The top 10 source nodes from each analysis provide a list of discrete biomedical con-
cepts to explain the relationship between COVID-19 and resistant hypertension. However,
it was also important to determine some coalesced themes that organized and explained
how the highly ranked source nodes are collectively altering physiological function. A
previously described bag-of-words text mining approach [22] was utilized to identify the
top five defined physiological themes that provide structure for how the highly ranked
source nodes explain the relationships between COVID-19 and resistant hypertension. Each
relationship for the top-ranked concept was algorithmically evaluated and assigned to a
theme using the full text article for each unique PubMed journal article (e.g., PMID). The
“unknown” label was used to quantify relationships where a clear physiological function
could not be determined. Finally, external human validation of subset of full text literature
was utilized to deduce context from the highly ranked metapaths.

3. Results

First, metadata for the list of simulations is examined. Second, intersecting nodes more
directly relating COVID-19 and resistant hypertension are analyzed. Third, hub nodes are
selected and hub node analysis performed to identify deeper, cross-domain relationships
that may better unearth lesser-studied etiological connection(s) between COVID-19 and
resistant hypertension.

3.1. Analysis Metadata

HeteSim scores are utilized to determine source node relevance. However, the Het-
eSim scores will vary depending on the query, the number of related source nodes, and
the specified source node types included in the analysis. As such, HeteSim scores can
only be directly compared within a given simulation. Because multiple simulations are
performed as part of cross-domain text mining, additional normalization is required to
enable different layers of simulation to be fairly aggregated, filtered, and compared. As
such, returned HeteSim results utilized for ranking relevant source nodes were normalized
and percentile ranked. The number of metapaths and number of source nodes were taken
into consideration for the normalization when aggregating, intersecting, or comparing
simulations. The UMLS node types were analyzed separately for each analysis.

Table 2 summarizes the simulation output metadata. Note that A4 is omitted because
it is not a separate simulation but, rather, a filtered analysis of the intersection of A5 and A6.
Table 2 illustrates the number of source nodes identified in each simulation, the metapath
count, the minimum HeteSim score, the maximum HeteSim score, and the mean HeteSim
score. The source node count represents the number of discrete UMLS concepts identified.
The metapath count represents the number of relationships between the identified source
nodes and target node(s). The HeteSim score is a relevance metric used to rank the most
important source nodes to the user-specified target node(s). SemNet 2.0 uses unsupervised
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machine learning rank aggregation to produce a HeteSim score between 0 and 1. Higher
HeteSim scores represent more relevant or important source nodes.

Table 2. Summary of result metadata for the SemNet 2.0 simulations. Metadata includes source node
count, metapath count, average HeteSim score, minimum HeteSim score and maximum HeteSim
score. Metadata were used to normalize HeteSim scores and enable comparison and/or aggregation
of simulation results. Note there are no metadata for A4 because it was not a separate simulation
but, rather, the intersection of A5 and A6 filtered to obtain hub nodes used to construct the input for
SemNet 2.0 simulations for A1, A2, A3.

ID Target Node(s) Source Node
Count

Metapath
Count

Average
HeteSim

Minimum
HeteSim

Maximum
HeteSim

A6 COVID-19 75,731 41,932 0.2198 0.0001 1.0000
A5 Resistant hypertension 24,699 2883 0.3493 0.0003 1.0000
A3 AT1 receptor, COVID-19 67,779 69,722 0.2264 0.0002 1.0000
A2 Epithelial sodium channel, COVID-19 61,104 55,338 0.2091 0.0005 0.8292
A1 Mineralocorticoid receptor, COVID-19 70,038 77,486 0.2263 0.0002 1.0000

3.2. Analysis of Intersecting Nodes Related to COVID-19 and Resistant Hypertension

HeteSim scores for returned source nodes were normalized using min–max normal-
ization and then percentile-ranked. A Kendall Tau-b Rank Correlation was performed
on the percentile rankings for A5 and A6. The analysis resulted in τ = 0.160, indicating
low correlation. Results were further filtered by looking at the frequency of source nodes
within the results. Composite source nodes are those that contain a base ID with additional
IDs to link it to other source nodes. For example, for a protein family, the base ID would
be the protein itself, while composite IDs would contain information linking it to specific
genes that encode for it. Nodes were reduced down to their base IDs, and any nodes with a
frequency less than one were filtered out.

Source nodes with a high percentile ranking that were jointly related to resistant
hypertension and COVID-19 were defined as most relevant for the first search layer. The
highly ranked returned source nodes were separated by UMLS node type and sorted in
descending order first by their relevance to COVID-19 and then by resistant hypertension.
Recall that for this exploratory study, a top 10 approach was utilized to prioritize the most
relevant concepts using percentile rankings of the returned normalized HeteSim score(s).
To ensure adequate inclusion of each UMLS node type in the prioritized results, the UMLS
node types are segregated such that the top 10 source nodes for each UMLS node type are
included in the results of an analysis.

The top 10 predicted source nodes of node type AAPP are shown Figure 3a, the top
10 predicted source nodes of node type GNGM are shown in Figure 3b, and the top 10
predicted source nodes of the node type HORM are shown in Figure 3c. Collectively,
Figure 3 represents biomedical concepts that are well-represented in the knowledge graph
as having prominent shared connections between resistant hypertension and COVID-19.
The actual quantitative rankings do vary, but the scaling makes it difficult to see the
difference for nodes ranking, for example, between the 98th and 100th percentiles. Because
Figure 3 illustrates the predicted top 10 out of a very large list of possible source nodes,
many nodes have a high percentile ranking. Notably, the large number of AAPP and
GNGM source nodes in the knowledge graph contributes to their having a higher mean
top 10 percentile ranking. Recall rankings are not normalized by frequency of UMLS
source node type. Rather, the UMLS source node types are segregated in each analysis.
Figure 3 visually illustrates why rankings must be segregated by UMLS node type to insure
adequate node type inclusion. Within a given analysis, rankings should only be used to
compare source nodes of the same UMLS source node type.
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Figure 3. Top 10 highest scoring nodes for each UMLS node type (AAPP, GNGM, and HORM) for
the intersection of analyses (A5/A6) examining source nodes related to COVID-19 and resistant
hypertension. Source nodes were ranked using their normalized HeteSim scores and then percentile
ranked. Source nodes are separated into the top 10 source nodes for each UMLS node type. (a) Top-
10-ranked intersecting AAPP source nodes. (b) Top-10-ranked intersecting GNGN source nodes.
(c) Top-10-ranked intersecting HORM source nodes.
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3.3. Determination of RAAS Receptor Hub Nodes Related to COVID-19

To perform cross-domain text mining, hub nodes must be selected. Here we selected
3 highly connected RAAS hub nodes, which also had a relatively high degree of connections
to COVID-19: mineralocorticoid receptor, epithelial sodium channel, and angiotensin type
I receptor. The normalized HeteSim percentile ranking for each selected hub node to either
resistant hypertensin or COVID-19 is shown in Figure 4. The mineralocorticoid receptor had
the highest ranking to COVID-19 (42 percentile), followed by the epithelial sodium channel
(36 percentile), and angiotensin type I receptor (5 percentile). Notably, all three RAAS
receptors were weighted more heavily to resistant hypertension: mineralocorticoid receptor
(53 percentile), epithelial sodium channel (67 percentile), AT1 receptor (68 percentile).
Having a stronger relationship to resistant hypertension compared to COVID-19 is an
expected result because the connections of the RAAS receptors to COVID-19 are less
established. In contrast, the literature has for many years heavily cited connections of
resistant hypertension with the RAAS pathway, which strengthens those metapaths in the
knowledge graph.
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Figure 4. Hub node percentile ranking to COVID-19 or resistant hypertension. Mineralocorticoid
receptor, epithelial sodium channel, and angiotensin type I receptor were the three selected hub nodes.
Of the three hub nodes, the mineralocorticoid receptor had the strongest relationship to COVID-19.
The percentile rankings are notably higher for resistant hypertension for all three hub nodes. This is
due to the larger wealth of historical literature connecting the hub nodes to resistant hypertension
compared to the newer concept, COVID-19, which has substantially less literature.

3.4. Cross-Domain Analysis with RAAS Receptor Hub Nodes and COVID-19

The A5 andA6 simulations were an important starting point towards elucidating the
etiological links between COVID-19 and resistant hypertension. However, to elucidate
deeper connections, hub analysis was necessary. Figure 5 visualizes the results of the
overall highest ranked source nodes for each hub node. UMLS node types AAPP (shown
in purple in Figure 5) and GNGM (shown in green in Figure 5) were more prevalent in the
overall rankings than HORM (shown in grey in Figure 5). The greater frequency of AAPP
and GNGM node types is due to their being over-represented in the literature compared to
HORM. The top 10 related source nodes to each of the hub nodes ranges between the 98th
and 100th percentile.
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Figure 5. Top 10 highest scoring source nodes for each hub node simulation. The hub node and
COVID-19 were specified as target nodes in SemNet 2.0 and returned source nodes were constrained
to UMLS node type AAPP (purple), GNGM (green), and HORM (grey). The three hub node analyses
included mineralocorticoid receptor (A1), epithelial sodium channel (A2), and angiotensin type I
receptor (A3). The top 10 highest scoring source nodes were determined using normalized percentile
rankings of HeteSim scores for A1, A2, and A3. Due to the extremely large number of nodes in the
literature knowledge graph, the top 10 source nodes for each hub node simulation all had a percentile
ranking between the 98th and 100th percentile.

Next, the overall highest ranked source nodes from the intersection (A4) of the three
key RAAS receptors (A1-A2-A3) were used to identify new cross-domain relationships
to source nodes that would not appear in the shallow initial simulations that specifically
examined the intersection of resistant hypertension and COVID-19 (e.g., A5–A6). However,
a drawback of keeping source nodes that were highest ranked across all three hub nodes
is the over-representation of more general nodes like “enzyme structure”. Therefore, a
sorting approach was utilized to account for each hub node’s previously quantified direct
connections to COVID-19 shown in Figure 4. Thus, intersecting source nodes are sorted in
descending order first by their percentile ranking for the mineralocorticoid receptor (A1),
then by their percentile ranking for the epithelial sodium channel (A2), and finally by their
percentile ranking for the AT1 receptor (A3).

Figure 6 illustrates the sorted cross-domain source nodes with their percentile ranking
based on normalized HeteSim score separated by UMLS node type. The top-10-ranked
intersecting and sorted cross-domain source nodes of node type AAPP are shown in
Figure 6a, type GNGM are shown in Figure 6b, and type HORM are shown in Figure 6c.
These intersecting and sorted cross-domain source nodes for each UMLS node type repre-
sent more specific, newer, or less researched relationships that may provide more nuanced
context to explain the etiology between COVID-19 and resistant hypertension. Notably, the
percentile rankings are inevitably overall lower in the hub node simulations (i.e., A1, A2,
A3) compared to the original direct target simulations (i.e., A5, A6). For this reason, when
examining cross-domain hub node analyses, the individual discrete percentile rankings
of the top 10 source nodes for each node type is less informative. However, comparing
the relative percentile rankings across the three hub nodes is helpful for hypothesizing
potential underlying mechanisms.
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Figure 6. Top-10-ranked intersecting source nodes of each UMLS node type (AAPP, GNGM, and
HORM) for the three hub nodes and COVID-19 sorted in descending order by rankings of A1
(mineralocorticoid receptor), then A2 (epithelial sodium channel), then A3 (angiotensin I receptor):
(a) top-10-ranked intersecting and sorted source nodes of node type AAPP; (b) top-10-ranked in-
tersecting and sorted source nodes of node type GNGM; (c) top-10-ranked intersecting and sorted
source nodes of node type HORM. Recall the mineralocorticoid receptor was the most relevant
RAAS hub node related to resistant hypertension. As such, this figure highlights nodes identified by
cross-domain text mining that are predicted to be the most relevant for elucidating multi-scalar and
multi-factorial links between COVID-19 and resistant hypertension.

3.5. Synthesized Biological Themes Comprised by High-Ranking Concepts

Examination of the high-ranking source nodes from all pertinent analyses was per-
formed to identify a few coalesced physiological function themes. “Themes” provide clues
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for how the multi-scalar etiology between COVID-19 and resistant hypertension may fit
together. These themes were initially produced by quantitative analysis of physiological
tiers in the network with a simple bag-of-words text mining approach that has been previ-
ously described [22]. Each of the predicted top 10 concepts for each layer of analysis was
included in the theme analysis. Relationships to the concepts were counted to determine
their association frequency. The number of times a concept was attributed to a theme for
each unique PMID (e.g., for each full-text article with a unique PubMed identifier) was
counted and expressed as a percentage of the total as shown in Figure 7. In short, each
reported percentage corresponds to the percentage of overall relationships attributed to
the theme. Themes were validated using manual human visual inspection of a subset of
full-text articles comprising the identified high-ranking metapaths.
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Figure 7. Physiological theme analysis for the top predicted biomedical concepts from all layers of
analysis. The top predicted concepts primarily mapped to endocrine function, inflammation/cytokine
storm, lipid metabolism and storage, sympathetic input to blood pressure regulation, or altered
COVID-19 viral entry. “Unknown” was a label used to quantify concept relationships that did not
clearly map to a known physiological function theme.

As shown in Figure 7, the most frequent associated physiological functions for the top
predicted concepts (e.g., source nodes) fell under one or more of the following themes:

• Concept relationships that modulate endocrine function, predominantly via the
hypothalamic–pituitary–adrenal axis, 23.1%;

• Concept relationships mapping to inflammation and/or the cytokine storm, 21.3%;
• Concept relationships associated with lipid storage, metabolism, or atherosclero-

sis, 17.6%;
• Concept relationships that alter sympathetic drive for blood pressure regulation, 16.7%;
• Concept relationships that explained the entry or altered uptake of COVID-19, 14.8%;
• Concept relationships that did not clearly map to one of the above specified themes

were labeled as “unknown”, 6.5%.

4. Discussion

LBD simulations were performed in SemNet 2.0 to identify connections between
COVID-19 and resistant hypertension. In this section, interpretation and context is provided
for the top-ranked source nodes. First, the more shallow or direct connections are discussed,
which included returned source nodes that directly intersect with COVID-19 and resistant
hypertension. Second, the deeper, cross-domain relationships revealed are discussed, which
may better explain pertinent underlying etiology that connects COVID-19 and resistant
hypertension. Third, the major biological themes of returned source nodes from both direct
and cross-domain simulation are synthesized. Synthesized themes provide an overarching
view of predicted shared etiology between COVID-19 and resistant hypertension. Finally,
LBD and study-specific limitations are presented.
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4.1. Explicit Literature Relationships between Resistant Hypertension and COVID-19

The intersection of the A5-A6 simulations examined direct connections shared by
resistant hypertension (A5) and COVID-19 (A6) segregated by UMLS node type (AAPP,
GNGM, and HORM). Below each high-ranking source node is discussed with cited context
in the literature.

The top-ranking AAPP node types for the intersection of COVID-19 and resistant
hypertension are discussed below:

• haspin—Haspin is a mitotic kinase for Histone H3, is regarded as a promising anti-
tumor therapy; it is overexpressed in malignant tissues due to its requirement for
cancer cell proliferation [35].

• ral guanine nucleotide exchange factor—Ral guanine nucleotide exchange factor was
previously identified as an important signaling component that regulates transcrip-
tional responses in myocardial cells [36]. It also promotes cardiomyocyte survival and
inhibits cardiac fibrosis [37]. Interestingly, the Ral and Ras pathways have also been
implicated in myeloid differentiation [38] and especially the BCR-ABL mutation that
causes chronic myeloid leukemia [39].

• N-(3-Oxododecanoyl)-L-homoserine lactone—Prior work found that N-3-oxododecanoyl
homoserine lactone exacerbates endothelial cell death by inducing receptor-interacting
protein kinase 1-dependent apoptosis [40]. It also been reported to induce apoptosis
in various types of tumor cells, primarily through a mitochondrial pathway [41].
Notably, N-(3-Oxododecanoyl)-L-homoserine lactone is categorized as a bitter taste
receptor. Neutrophils, monocytes, and lymphocytes can express bitter taste receptors
being involved in immune response [42]. For this reason, N-(3-Oxododecanoyl)-L-
homoserine lactone was hypothesized as one possible therapy for COVID-19 [43].

• uridine kinase—The UK2 gene encodes a uridine kinase protein that catalyzes the phos-
phorylation of uridine and cytidine to uridine monophosphate (UMP) and cytidine
monophosphate (CMP). Uridine is phosphorylated to nucleotides [44]. Most notably,
the presence of uridine in RNA and DNA nucleotides allows the SARS-CoV-2 enzyme
to cleave RNA because SARS-CoV-2 is a uridine-specific endoribonuclease. Its active
site binds to the uridines that are phosphorylated to RNA and DNA nucleotides, allow-
ing the enzyme to cleave RNA [45]. Uridine nucleotides also play an important role in
achieving homeostasis in the vascular system. Augmented contractile responses to
uridine nucleotides in the femoral arteries of spontaneously hypertensive rates were
much higher than in non-hypertensive rats [46]. Uridine kinase has long been known
to be involved in the heart physiology. Earlier studies also showed a positive corre-
lation between thyroid hormone and presence of uridine kinase in cardiac cells [47].
More recent work showed that uridine has a hypoglycemic effect that protects against
diabetes-mediated functional and structural damage to cardiac mitochondria and
disruption of mitochondrial quality-control systems in the diabetic heart [48].

• metabotropic glutamate receptors—Chronic stimulation of group II metabotropic glu-
tamate receptors in the medulla oblongata attenuates hypertension development in
spontaneously hypertensive rats [49]. Group III metabotropic glutamate receptors
regulate hypothalamic pre-sympathetic neurons through opposing presynaptic and
postsynaptic actions in hypertension [50]. Metabotropic glutamate receptors are also
important in the regulation of steroidogenesis in the human adrenal gland [51]. As for
ties to COVID-19, SARS-CoV-2 uses metabotropic glutamate receptor subtype 2 as an
internalization factor to infect cells [52].

• aspartic endopeptidases—This group of endopeptidases is closely tied to the RAAS path-
way that induces hypertension and has also been utilized in HIV therapies [53]. As-
partic endopeptidases have also been investigated to reduce dexamethasone-induced
hypertension and associated fibrosis in rat models [54]. Their role in the RAAS path-
way has also been explicitly noted during and after COVID-19 infection [13].

• MAP3K1—MAP3K1 stands for MAP kinase kinase kinase 1. MAP kinase signaling
plays a prominent role in the RAAS pathway. Prior work has shown that angiotensin
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II up-regulates angiotensin I-converting enzyme (ACE), but down-regulates ACE2 via
the AT1-ERK/p38 MAP kinase pathway [55]. Anti-cytokine therapies targeting JAK-
STAT, such as Ruxolitinib, were shown to have a lesser incidence of cardiovascular
adverse events compared to steroids given for COVID-19 [56].

• protein tyrosine phosphatase—One type of protein tyrosine phosphatase, CD45, was
found to be altered in the leukocytes of COVID-19 patients [57]. Protein tyrosine
phosphatase has been cited as having a role in both essential hypertension [58] and
pulmonary hypertension [59]. Not surprisingly, tyrosine kinase inhibitors for CML
therapy also cause similar adverse events [22]. Similarly, the related JAK pathway has
overlap with both COVID-19 and CML [60]. Imatinib, a first-line therapy for CML,
was tried as a potential COVID-19 therapy based on two hypothesized roles [61]:
(1) potential intralysosomal entrapment of imatinib may increase endosomal pH
and effectively decrease SARS-CoV-2/cell fusion, (2) the kinase inhibitory activity of
imatinib may interfere with budding/release or replication of SARS-CoV-2.

• cGMP-dependent protein kinase II—Angiotensin II/AT2 receptor-induced vasodilation
in stroke-prone spontaneously hypertensive rats involves nitric oxide and cGMP-
dependent protein kinase [62] and also has shown to impact hypertrophy and
fibrosis [63].

• choline phosphate cytidylyltransferase—Choline phosphate cytidylyltransferase responsi-
ble for regulating phosphatidylcholine content in membranes. Fetal lung fatty acid
synthase and choline phosphate cytidylyltransferase activities are increased by gluco-
corticoids [64].

The top-ranking GNGM node types for the intersection of COVID-19 and resistant
hypertension are discussed below:

• MAP3K10—MAP3K10 stands for MAP kinase kinase kinase 10. MAP3K10 activity
has been cited in many cancers, namely pancreatic cancer. However, it has also been
implicated in the atherosclerotic inflammatory process [65].

• tat genes—The tat (transactivator of transcription) gene transcribes the tat protein, a
required transactivator for expression of full-length viral genes, which influences ex-
pression of cellular inflammatory genes [66]. Tat has also been implicated in pathways
that to modulate angiotensin II-induced medial hypertrophy [67].

• exportin 5—Exportin 5, also known as XPO5, is a gene that has been implicated
in pregnancy-induced hypertension [68]. While XP05 was thought to modify viral
expression, there was no difference in XPO5 expression in COVID-19-infected versus
control patients [68].

• CMD1B—CMD1B is associated with pregnancy-induced hypertension and familial
dilated cardiomyopathy [69]. One case report in a young COVID-19 patient with
Emery–Dreifus muscular dystrophy and a family history of dilated cardiomyopathy
found indication of viral myocarditis [5].

• FLNA—FLNA defects can be lethal as it leads to skeletal defects and defects which
cause severe cardiac malformations [70].

• USP17L2—Ubiquitin-Specific Peptidase 17-Like Family Member 2 is most known for
its role in cancers [71]. USP17 substrates populate two pathways that drive cell cycle
progression: one that promotes and one that inhibits. This dual path could explain its
both pro-cancer and anti-tumor effects.

• dicer enzyme—Dicer enzyme is a microRNA that has been associated with pregnancy-
induced hypertension [68] as well as the brain renin–angiotensin II-induced hyperten-
sion and cardiac hypertrophy [72]. More recently, one isoform of Dicer, named antiviral
Dicer (aviD), was found to protect tissue stem cells from RNA viruses—including Zika
virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)—by dicing
viral double-stranded RNA to orchestrate antiviral RNAi [73].

The top-ranking HORM node types for the intersection of COVID-19 and resistant
hypertension are discussed below:
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• somatotropin-releasing hormone—Somatropin is responsible for modulating the release of
growth hormone. There is a known delicate balance between endocrine and autonomic
function that impact blood pressure. Somatropin hormone, thyrotropin, gonadotropin-
releasing hormone, and corticotropin-releasing hormone and others impact the RAAS
pathway via angiotensin II to modulate blood pressure [74]. Individuals with isolated
congenital GH deficiency due to a GHRH receptor gene mutation appear to cope
better with SARS-CoV-2 infection than controls [75]. Likewise, somatotropin-releasing
hormone has been shown to be highly correlated to COVID-19. Observations show
growth-stimulating hormone may pose as a predictor for severity of post-COVID-19
symptoms while also appearing somewhat relevant to resistant hypertension [76].
Prior research illustrated the anti-inflammatory properties of growth-stimulating
hormone receptor antagonists to resistant hypertension [77].

• melanocyte-stimulating hormone—Melanocyte-stimulating hormones (MSHs) are in-
volved in energy metabolism and in inflammation. While melanocyte-stimulating hor-
mones are prevalently acknowledged to have anti-inflammatory and anti-hypertensive
properties, their impact and role as a potential adjuvant treatment for COVID-19 re-
mains under scrutiny [78]. Additionally, alpha- and gamma-MSH acutely elevate
blood pressure and heart rate through central stimulation of sympathetic nervous
outflow [79]. One study implicated neuropeptide Y and alpha-melanocyte-stimulating
hormone in hypothalamic regulation of sympathetic nervous system activity [80].

• pegylated leptin—Pegylated leptin has been shown to play an important role in de-
velopment via hypothalamic trophic factors [81]. Leptin also has prominent roles in
energy metabolism. Leptin resistance causes obesity [82].

• beta-lipotropin—Beta-lipotropin was initially reported to stimulate melanocytes to
produce melanin. Later, it was found to perform lipid-mobilizing functions such as
lipolysis and steroidogenesis [83].

• corticotropin—Also known as adrenocorticotropin hormone, corticotropin is produced
by the anterior pituitary gland and is an important part of the hypothalamic–pituitary–
adrenal axis. As such, it has direct roles in the stress response that increases blood
pressure. Autopsy studies on patients who died from the SARS outbreak in 2003
had shown degeneration and necrosis of the adrenal cortical cells [84]. Additionally,
SARS-CoV-2 (e.g., COVID-19) was identified in the adrenal glands, hinting towards a
direct cytopathic effect of the virus and altered cortisol dynamics [84].

• growth-hormone-releasing peptide-2—Also known as GHRP2, it is a synthetic agonist
of ghrelin, a gut peptide that binds to the growth hormone secretagogue receptor.
Ghrelin increases growth hormone secretion and appetite initiation [85].

• pro-opiomineralocorticoid—This hormone is synthesized in the anterior pituitary and
is part of the central mineralocorticoid system. It has been mentioned as part of the
hypothalamic–pituitary autoimmunity seen in COVID-19 patients [86]. Mineralo-
corticoid receptors are thought to relieve the endothelial and systemic inflammatory
mechanisms of respiratory viruses [87].

• prolactin—Prolactin is best known for its role in enabling milk production. However,
it also has a role in immunity. For this reason, it was hypothesized that controlled
augmentation of prolactin could provide protective benefits for patients infected with
COVID-19 [88]. Anecdotal evidence was presented in seven patients when prolactin
was initially recommended as a possible repurposed therapy [88].

• thyroid hormones—Thyroid hormones were a recurring top-ranked source node. The
thyroid gland also express angiotensin-converting enzyme 2 (ACE2), the main protein
that functions as a receptor to which SARS-CoV-2 binds to enter host cells. Immune
system cells are targets for thyroid hormones and T3 and T4 modulate specific immune
responses, including cell-mediated immunity, natural killer cell activity, the antiviral
action of interferon and proliferation of T- and B-lymphocytes [89]. Thyroid pathology
is a known event during and immediately after COVID-19 infection. There has
been numerous established cases of COVID-19 induced pathology [89] ranging from
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thyrotoxicosis to suppressed thyroid function, which are largely attributed to the
“cytokine storm” [90]. However, one study found that the thyroid hormones T3 and
T4 are decreased during active COVID-19 infection compared to baseline [91].

4.2. Intersection of RAAS Hub Nodes and Relationship to COVID-19 and Resistant Hypertension

Hub node analysis allowed a deeper cross-domain probing of the knowledge graph
to find less represented relationships that have more distant literature connections to
COVID-19 and/or resistant hypertension. The returned intersecting and filtered A1-A2-A3
source nodes (e.g., mineralocorticoid receptor, epithelial sodium channel, AT1 receptor)
from cross-domain hub analysis shown in Figure 6 are more likely to convey nuanced
information. As such, these predictions may help prioritize future experiments to further
elucidate their relationship(s) between COVID-19 and resistant hypertension.

The top-ranking AAPP node types for the intersection of the three RAAS hub nodes
and COVID-19 are discussed in context with the supporting literature below:

• poly-beta-hydroxybutyrate depolymerase—It is most known for its role in bacterial microbe
metabolism. It is produced by penicillium expansum. Notably, the enzyme requires
essential disulphide bonds (cystine residues) and tyrosine to maintain the native
enzyme structure [92]. Moreover, patients with severe COVID-19 were found to have
elevated levels of branched-chain amino acids and beta-hydroxybutyrate [93].

• CR 1392—It is most known for its role on pancreatic exocrine function and insulin re-
lease [94,95]. Glucose dysregulation among patients the COVID-19 is well known [96].
The inflammation of COVID-19 is believed to contribute to increased blood glucose
levels. COVID-19 patients with new or worsened glucose dysregulation requiring
additional or new insulin administration were associated with poorer outcomes in a
study of 456 patients [96].

• BCR-ABL fusion gene—Within the list of highest percentile-ranked amino acids and
proteins in Figure 6a, the BCR-ABL fusion gene possesses a percentile ranking for
mineralocorticoid receptors that is nearly 50% higher than the next greatest percentile
ranking for the source nodes of interest. While most clinicians associate the presence
of BCR-ABL fusion gene with chronic myeloid leukemia (CML), about 10% of healthy
control patients express at least some measurable copies in their peripheral blood [97].
Prior work relating COVID-19 to CML concisely summarizes the role of the gene
in upregulating fusion transcripts and proteins, ultimately intensifying the presence
and activity of tyrosine kinase within the body [98]. Recent extensive investigation
of tyrosine kinase has revealed its direct association in vasculopathy as well as its
antihypertensive properties from its interactions with endothelial receptors [99]. Such
findings could explain the well-predicted increase in cardiovascular adverse events,
including hypertension, in CML patients on tyrosine kinase inhibitor therapies [22].
Since protein kinase in integral in the signaling process of mineralocorticoid receptors
both on and within the nucleus of endothelial cells [100], it can be hypothesized that
COVID-19 provokes resistant hypertensive tendencies partially by manipulating the
expression of BCR-ABL in the mineralocorticoid receptor pathway, decreasing the
activity of tyrosine kinase [100].

• high-density lipoprotein sphingomyelin—It is part of high-density lipoprotein (HDL).
HDL levels are an inverse risk factor for cardiovascular diseases, and sphingomyelin
is the second most abundant phospholipid component and the major sphingolipid in
HDL [101]. In one large-scale study, patients with severe COVID-19 were reported
to have low levels of total cholesterol, HDL-cholesterol, and LDL-cholesterol, but
elevated levels of triglycerides [93].

• immunoglobulin heavy chain variable domain—It is important for binding the antigen and
the chain variable constant domains necessary for successful B cell maturation. The
heavy chain variables have been suggested as a point of entry for useful applications
for prophylaxis and therapy of COVID-19 alone or in combination [102].
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• pregnancy-associated murine protein 1—This particular protein is from the mouse do-
main. However, there could be some relevant ties to clinical COVID-19. Prior work
demonstrated a distinct difference in immune modulation between the non-pregnant
and pregnant states in COVID-19 patients, which may provide some insight into the
pathogenesis of COVID-19 and perhaps explain the more severe outcomes observed
in pregnant women [103].

• recQ4 helicase—RecQ4 helicase is a family of helicase enzymes that has been shown to
be important in genome maintenance and stability [104]; they catalyze the reaction of
ATP and water to drive the unwinding of paired DNA. Relatively little is known about
recQ4 other than its important role in genetic stability. Other helicases besides recQ4
have been suggested as potential therapies for COVID-19 based on their antiviral
activity [105].

• HCF1—HCF1 is involved in control of the cell cycle and has regulatory roles in a
multitude of processes related to transcription. Transcriptional coactivator HCF-1
couples the histone chaperone Asf1b to HSV-1 DNA replication components [106].
Recent works point to HCF1 as being a putative longevity determinant [107]. Addition-
ally, prior work with herpes simplex virus (HSV) illustrated that multiple chromatin
modulation components associated with HCF-1 lead to the initiation of immediate
early gene expression in HSV [108].

• ATP6V0D1—ATP6V0D1 encodes a component of vacuolar ATPase (V-ATPase) and
is involved in lysosome homeostasis. Clinically, a high expression of ATP6V0D1
was correlated with prolonged survival of patients with pancreatic ductal adenocarci-
noma [109]. It has been shown to correlate with thyroid hormones [110] and proinsulin
processing [111]. Collectively, these data suggested that the S protein from COVID-19
increased V-ATPase in SARS-CoV-2 infection, which provided a microenvironment
easier for the cleavage of S protein by making the activation of inflammatory cells in
the respiratory epithelium easier [112].

The top-ranking GNGM node types for the intersection of the three RAAS hub nodes
and COVID-19 are discussed in context with supporting literature below:

• imipramine demethylase—Imipramine is a tricyclic antidepressant that undergoes demethy-
lation as part of metabolism. Imipramine increases dopamine in the striatum [113].
Imipramine demethylation is associated with the CYP2D6 and CYP2C19 genotype.
While there is no straightforward reason for its predicted association with COVID-19,
it is known that dopamine increases hypertension [114]. A meta-analysis examining
the association of anti-depressants with COVID-19 incidence and severity found that
most either had no impact or had have slight protective effects [115].

• TRIM40—Tripartite motif (TRIM)-containing proteins are E3 ubiquitin ligases that pos-
sess crucial regulatory functions in innate immunity [116]. In particular, they attenuate
antiviral immune response [117]. TRIM40 also has associations with IgA nephropathol-
ogy, which causes kidney disease; it is thought to suppress IgA1-induced GMC prolif-
eration by inhibiting the activation of NLRP3 inflammasome [116]. TRIM40′s associa-
tions with kidney disease and regulatory functions in immunity both align with a role
in resistant hypertension and COVID-19, respectively.

• QARS gene—Encoding glutaminyl-tRNA synthetase QARS has been implicated in
progressive microcephaly, severe seizures in infancy, atrophy of the cerebral cortex and
cerebellar vermis, and mild atrophy of the cerebellar hemispheres [118]. Its repeated
selection by the algorithm as a potential important source node for the relationship
between COVID-19 and resistant hypertension remains unclear.

• COL1A1+COL1A2 gene—are collagen I and II genes that encode primarily for connec-
tive tissue. COL1A1+COL1A2 gene mutations are most implicated in osteogenesis
impefecta (OI), which is also known as brittle bone disease. Additionally, patients
with COL1A1+COL1A2 gene mutations have shown various forms of cardiovascular
pathology, particularly regurgitation of the heart valves, attributed to poor colla-
gen [119]. Interestingly, a small study examining pediatric OI patients found that they
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had no difference in outcome after COVID-19 infection [120]. Moreover, two therapies
used for OI, mesenchymal stem cells and decidua stromal cells were used to treat
SARS-CoV-2 coronavirus-induced disease [121] as an anti-inflammatory treatment to
reduce COVID-induced cytokine storm.

• MPST—The biological function of MPST remains unclear. It may be involved in
cyanide detoxification, biosynthesis of thiosulfate, production of the signaling molecule
hydrogen sulfide, or the degradation of cysteine. Sulfur metabolism in the liver has
been strongly correlated with hypertension in animal models [122]. Sulfur dioxide also
increases pulmonary hypertension [123]. Interesting, air pollutants like sulfur dioxide
were found to be associated with increased incidence of COVID-19 [124]. Additionally,
liver dysfunction marked by elevation of lipoproteins X and Z has been found in
patients with severe COVID-19 [93].

• H3C2 gene—It encodes for histone 3, which is fundamental in development. H3C2 has
been associated with several pediatric gliomas [125]. Notably, haspin, which encodes
for histone, was found to be among the top-ranking nodes for both AAPP and GNGM
node types in analysis A4, which examined the intersecting source nodes for resistant
hypertension and COVID-19.

• VPS54—VPS54 is most known for its role in motor pathology, such as ALS phenotypes,
including the wobbler mouse [126]. However, the vacuole protein sorting gene VPS54
was also recently shown to be required for extracellular virus (EV) formation in
monkeypox infection [127]. It is possible VPS54 may play a similar role in COVID-19.

• TPM2—TPM2, which encodes beta-tropomyosin, is well known for its role in atheroscle-
rosis [128]. Downregulation is also associated with various cardiomyopathies and
coronary artery disease [129]. Coronary artery disease is a known risk factor for poor
COVID-19 outcomes [130].

• EXOSC2—Low expression of EXOSC2 was found to protect against clinical COVID-19
and impedes SARS-CoV-2 replication [131]. Likewise, aggregating COVID-19 GWAS
statistics revealed an association between increased expression of EXOSC2 and higher
risk of clinical COVID-19 [131]. EXOSC2 is a component of the RNA exosome that
LC-MS/MS analysis demonstrated an interaction between the SARS-CoV-2 RNA
polymerase and the majority of human RNA exosome components [131]. Additionally,
EXOSC2 has been linked to sudden cardiac death [132] due to cardiac conduction
abnormalities and arrhythmia from QTc prolongation. As such, EXOSC2 has clear ties
to both COVID-19 and cardiovascular disease.

• ribosomal protein S10—The role of ribosomal protein S10 is not clear with COVID-19.
However, there is an association with lupus autoantibodies [133]. COVID-19 and
subsequent cytokine storm was associated with both new onset lupus [134] as well
as lupus flares in existing patients with systemic lupus erythematosus (SLE) [135].
Additionally, hydroxychloroquine, a common drug for lupus, was found in com-
puter simulations to illustrate a potential benefit [20]. While hydroxychloroquine was
initially tried as an adjuvant therapy for COVID-19, its efficacy for COVID-19 was ulti-
mately found to be controversial [135]. Hydroxychloroquine for COVID-19 was largely
stopped over concerns of sudden cardiac death from arrhythmia [136]. Interesting, an
increase in new onset SLE has been noted after COVDI-19 infection [134].

The top-ranking HORM node types for the intersection of the three RAAS hub nodes
and COVID-19 are discussed in context with supporting literature below:

• TAP-144—TAP-144 is also known as leuprorelin or leuprolide, which is a gonadotropin-
releasing hormone analogue family of medications. Side effects may include high
blood sugar and problems with the pituitary gland. Interestingly, previous artificial
intelligence work identified leuprolide as a possible repurposed drug for COVID-19
based on its structural biology [137]. TAP-144 has a high binding affinity to COVID-19
and was thought to modify the functional ability of the spike protein. Leuprolide
was validated by molecular docking against the spike protein complex with ACE
receptor [137].
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• des-n-octanoyl ghrelin—Ghrelin is involved in appetite stimulation and growth hormone
release. Des-n-octanoyl ghrelin has some distinct functions from ghrelin. Namely, the
lack of acylation prevents binding to the ghrelin receptor and growth hormone release.
Interestingly, patients with cardiovascular events were found to have lower levels of
des-acyl ghrelin at baseline than those without cardiovascular events [138].

• beta-lipotropin—Both beta-lipotropin and beta-endorphin are present in cardiac tissue.
The amounts and ratio of beta-endorphin and beta-lipotropin in the heart appear to
be modulated by testosterone propionate [139]. Circulating beta-endorphin and beta-
lipotropin concentrations increase after the administration of acetylcholine or serotonin
agonist drugs [140]. Patients with heart disease, namely congestive heart failure, were
found to have lower amounts of beta-lipotropin than control patients [141].

• gonadotropin—Gonadotropins and GNRH1 protein have been most cited based on sus-
pected changes in fertility after COVID-19 infection [142]. Sub-clinical hypogonadism
has been seen following COVID-19 infection in males characterized by increased LH
and decreased testosterone production [143].

• human salmon calcitonin—has been recognized in thyroid extracts of normal subjects
and of patients with medullary carcinoma [144]. Multiple studies have investigated
the impact of human salmon calcitonin on cancer risk [145].

• liraglutide—Liraglutide is anti-diabetic medication utilized to treat hyperglycemia due
to type 2 diabetes. New onset diabetes is another disease found to be a sequala of
COVID-19 [10,11]. Higher blood sugar tends to happen during and after COVID-19
infection [96,146] and is a comorbidity with other reported endocrine dysfunction
brough on or exacerbated by COVID-19 [91].

• octreotide—Octreotide has been successfully utilized to treat portal hypertension in the
liver associated with cirrhosis or other liver pathology [147]. As noted earlier, markers
of hepatic dysfunction are also prominent in severe COVID-19 illness [93]. One study
reported a patient with acromegaly and pre-diabetes with severe respiratory distress
from COVID-19 that responded quite positively to the administration of octreotide to
improve COVID-19 outcome [148]. Additionally, another structural biology simulation
predicted octreotide as a viable repurposed drug for COVID-19 [149]. Acromegaly has
been hypothesized by other studies to be a point of emphasis in COVID-19 etiology
and treatment [150].

• somatotropin—is a recombinant form of human growth hormone. In a clinical study of
456 patients, growth hormone and IGF-1 deficiency were found in COVID-19 cases
with lung involvement, regardless of age or gender; COVID-19 infection progressed
worse in GH and IGF-1 deficiency [151]. Another study examining COVID-19 in-
flammation in cellular model found that growth hormone and estradiol improved
inflammation, but testosterone had the opposite effect [152]. However, a potential
complicating factor of growth hormone treatment for COVID-19 is that acromegaly,
a state of endogenous GH excess, results in myocardial hypertrophy and decreased
cardiac performance with increased cardiovascular mortality [153].

• gastrins—Hypertension is related to impaired metabolic homeostasis and can be
regarded as a metabolic disorder [154]. Interestingly, an in silico modeling study
examining molecular dynamics suggested that pentagastrin, a synthetic polypep-
tide that has effects like gastrin when given parenterally, could be a viable drug for
COVID-19 [155]. Gastrin-releasing peptide has long been held for its possible role as a
target for inflammatory disease [156], including cardiovascular disease, gastrointesti-
nal disease, pulmonary disease, and of course, its roles in endocrine disorders, namely
glucose metabolism.

• thyroid hormone—Thyroid hormone was a recurring highly ranked source node identi-
fied during both direct simulation and cross-domain analysis. It has been hypothesized
that hyperinflammation, as reflected by the secretion of cytokines, might induce thy-
roid dysfunction among patients with COVID-19. Thyroid hormone involvement in
the acute phase of symptomatic COVID-19 and its possible associations with cytokine
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levels and mortality risk have been explored [157]. Findings suggest that fluctua-
tions of TSH levels in patients with COVID-19 may be influenced by circulating IL-8,
IL-10, IL-15, IP-10, and GM-CSF as previously described in autoimmune thyroid
diseases [157]. Thyroid sequala are well-documented in COVID-19 [84,89,91,157].
There are also documented correlations with thyroid hormone and salmon and human
calcitonin peptides and uridine kinase [47], of which salmon calcitonin peptide was
also a highly ranked AAPPs in the present study [144].

4.3. Explaining Synthesized Biological Themes Comprised by High-Ranking Concepts

The relationships to the high-ranked source nodes were evaluated using discrete
unique full text PubMed journal articles and then classified into physiological themes.
The majority of relationships were mapped to six major physiological themes: altered
endocrine function, 23.1%; inflammation or cytokine storm, 21.3%; lipid metabolism,
storage, atherosclerosis, 17.6%; sympathetic input to blood pressure regulation, 16.7%;
altered entry of COVID-19 virus, 14.8%; and unknown, 6.5%.

The dominance of these themes can be an anecdotally validated via existing clinical
association studies. Both resistant hypertension and COVID-19 act through the RAAS path-
way. Thus, patients with existing clinical or even preclinical tendencies to have disruption
in the RAAS pathway could explain why hypertension is a known risk factor for COVID-19.
Likewise, the inflammation and cytokine storm that occurs in some COVID-19 patients can
increase hypertension through RAAS and the hypothalamic–pituitary–adrenal axis [84].
The cytokine storm can also impact endocrine function, namely thyroid hormone [90] and
growth hormone [151], both of which were recurring top predict concepts in multiple Sem-
Net 2.0 analyses in the present study. Furthermore, endocrine dysfunction changes, such as
decreased thyroid hormone then propagates to dysfunctions in lipid storage, metabolism,
and risk of atherosclerosis through dyslipidemia. Recall thyroid disorders [89,91], diabetes,
and dyslipidemia have also been identified in clinical populations as sequela to COVID-19
infection [11]. Finally, neurologic regulatory changes, including to the neurons of the
gut, may change the ion, neurotransmitter, or gain regulation for the neurons that control
sympathetic regulation of blood pressure [154]. For example, melanocyte-stimulating
hormone was predicted as a top target in multiple simulations and is known to increase
sympathetic input to blood pressure regulation [79]. Figure 8 illustrates the relationships
between themes.
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4.4. Study Limitations

No form of model or analysis is perfect. Likewise, LBD has known limitations. Be-
low, we discuss technical limitation of the algorithm and applied limitations in terms of
interpreting the present study’s results.

4.4.1. Technical Limitations

Technical limitations include limitations of the input data, algorithm, and validation or
generalizability of results. The input data to LBD are quite literally the scientific literature,
which has its own imperfections. The SemNet 2.0 algorithm data input are the text from
abstracts from about 33+ million journal articles contained within PubMed. SemNet 2.0
does not utilize a publication quality index, citation index, etc., to weight data sources.
Rather, all data sources are treated equally. Also, SemNet 2.0 cannot account for context-
related changes over time. Rather, all extracted relationships are added to the graph. The
underlying text to metapath translation algorithm [158] has a 75–85% accuracy, which
remains a fairly state-of-the-art accuracy for biomedical text natural language processing.
In the future, improved named entity recognition and relationship extraction algorithms
will further raise the translation accuracy for SemNet 2.0 and other LBD tools. Finally, the
ranking is performed by a revised unsupervised learning rank aggregation [18], which
means there is no known ground truth from which to test the model. However, external
COVID-19 clinical studies that tested some of the repurposed drug predictions made by a
LBD link prediction algorithm employing SemNet [20] found at least 40% of its predictions
to be clinically successful [21]. As such, there are external data to suggest the SemNet
family of LBD algorithms is useful for exploration and prioritization of relationships to
targets of interest. In the present exploratory study, which examined a topic with less
discrete clinical consensus, the top hits (i.e., top 10) approach was utilized. Given there
are so many related source nodes, a limitation is that it is technically possible the 11th or
25th hit, etc., could also be just as important. This limitation is true for essentially any
large-scale unsupervised ranking algorithm. The exact queries to produce the results were
provided in Section 2.3, and the free SemNet 2.0 source code link is available to readers as
shown in the Data Availability Statement.

4.4.2. Applied Limitations

Applied limitations include how the LBD algorithm can be utilized to interpret results
of a specific inquiry. It should be noted that the intersection of the A5–A6 results examine
direct connections to COVID-19. As such, the top-ranked intersecting A5–A6 concepts have
known literature connections specifically to COVID-19. However, the algorithm cannot
distinguish between symptomatic or asymptomatic illness or COVID-19 illness or symptom
severity. Additionally, it does not distinguish between effects induced by natural COVID-19
infection versus a COVID-19 vaccination. Furthermore, the simulations cannot specify
temporal order or temporal sequence of pathological relationships. Thus, the algorithm
cannot differentiate between relationships that occur during active COVID-19 infection
versus relationships that occur after COVID-19 recovery. Finally, there is a trade-off in
known specificity of the ranked concepts’ relationship to the target nodes and attempting
to identify lesser or under-studied relationships relevant to the target nodes. Simulations
examining direct connections to the target nodes (e.g., intersection of A5–A6) will inherently
be more specific but are more likely to produce well-known relationships. In contrast, cross-
domain simulations with hub nodes (e.g., intersection of A1-A2-A3) are inherently less
specific to the target nodes but enable the algorithm to predict under-studied concepts that
could be just as important to the target(s) of interest. For this reason, it is important to
report and interpret both direct simulation and cross-domain simulation results.

5. Conclusions

In conclusion, cross-domain text mining using artificial intelligence uncovered and pri-
oritized connections between COVID-19 and resistant hypertension for future experimental
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assessment. While the ties to multi-scalar etiology were wide-reaching, there were a few
consistent etiological themes synthesized: nodes that explained the entry or altered uptake
of COVID-19 (dicer enzyme, VPS54); nodes related to inflammation or cytokine storm (tat
genes, ATP6V0D1, TRIM40, gastrins, ribosomal protein S10); nodes involved in the cell
cycle, DNA/RNA stability, or tumor/anti-tumor effects (haspin, ral guanine nucleotide
exchange factor, BCR-ABL fusion gene, N-(3-oxododecanoyl)homoserine lactone, USP17L2,
recQ4 helicase, HCF1, H3C2 gene, EXOSC2); nodes involved in lipid storage, metabolism,
or atherosclerosis (choline phosphate cytidylyltransferase, MAP3K10, pegylated leptin,
beta-lipotropin, CR 1392, high-density lipoprotein sphingomyelin, TPM2); nodes that al-
ter sympathetic drive for blood pressure or involved in RAAS pathway (uridine kinase,
metabotropic glutamate receptors, aspartic endopeptidases, MAP kinase kinase kinase 1,
protein tyrosine phosphatase, cGMP-dependent protein kinase II, imipramine demethylase;
and nodes that can modulate the endocrine system via the hypothalamic–pituitary–adrenal
axis (somatotropin-releasing hormone, melanocyte-stimulating hormone, corticotropin,
growth-hormone-releasing peptide-2, pro-opiomineralocorticoid, prolactin, des-n-octanoyl
ghrelin, beta-lipotropin, gonadotropin, TAP-144 or liraglutide octreotide, somatotropin,
and thyroid hormone).

Author Contributions: Conceptualization, D.K., K.M., J.D., J.J.K. and C.S.M.; methodology, D.K.,
K.M., J.D., D.Z., K.Z., R.U., J.J.K. and C.S.M.; software, D.K., K.M., J.D. and R.U.; validation, J.D., D.Z.,
K.Z., R.U. and C.S.M.; formal analysis, D.K., K.M., J.D., D.Z., K.Z., R.U. and C.S.M.; investigation,
D.K., K.M., J.D., J.J.K. and C.S.M.; resources, C.S.M.; data curation, D.K., K.M., J.D., D.Z., K.Z., R.U.,
J.J.K. and C.S.M.; writing—original draft preparation, C.S.M.; writing—review and editing, D.K.,
K.M., J.D., D.Z., K.Z., R.U. and C.S.M.; visualization, J.D., R.U. and C.S.M.; supervision, C.S.M.;
project administration, C.S.M.; funding acquisition, C.S.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Science Foundation grant 1944247 to C.S.M.,
National Institute of Health grant U19-AG056169 sub-award to C.S.M., the Chan Zuckerberg Initiative
grant 253558 to C.S.M., and the Georgia Institute of Technology President’s Undergraduate Research
Award to K.M. and J.D.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: SemNet 2.0 code can be found on GitHub https://github.com/patho
logydynamics/semnet-2 (accessed on 9 August 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tang, D.; Comish, P.; Kang, R. The hallmarks of COVID-19 disease. PLoS Pathog. 2020, 16, e1008536. [CrossRef] [PubMed]
2. Clerkin, K.J.; Fried, J.A.; Raikhelkar, J.; Sayer, G.; Griffin, J.M.; Masoumi, A.; Jain, S.S.; Burkhoff, D.; Kumaraiah, D.;

Rabbani, L.; et al. COVID-19 and Cardiovascular Disease. Circulation 2020, 141, 1648–1655. [CrossRef] [PubMed]
3. Liu, F.; Liu, F.; Wang, L. COVID-19 and cardiovascular diseases. J. Mol. Cell Biol. 2021, 13, 161–167. [CrossRef] [PubMed]
4. Tadic, M.; Cuspidi, C. Resistant hypertension and COVID-19: Tip of the iceberg? J. Hum. Hypertens. 2022, 36, 693–694. [CrossRef]
5. Dumitru, I.M.; Vlad, N.D.; Rugina, S.; Onofrei, N.; Gherca, S.; Raduna, M.; Trana, A.; Dumitrascu, M.; Popovici, E.;

Bajdechi, M.; et al. SARS-CoV-2 Infection and Emery-Dreifuss Syndrome in a Young Patient with a Family History of Dilated
Cardiomyopathy. Genes 2021, 12, 1070. [CrossRef]

6. Isik, F.; Cap, M.; Akyuz, A.; Bilge, O.; Aslan, B.; Inci, U.; Kaya, I.; Tastan, E.; Oksul, M.; Cap, N.K.; et al. The effect of resistant
hypertension on in-hospital mortality in patients hospitalized with COVID-19. J. Hum. Hypertens. 2022, 36, 846–851. [CrossRef]

7. Dudenbostel, T.; Siddiqui, M.; Oparil, S.; Calhoun, D.A. Refractory Hypertension: A Novel Phenotype of Antihypertensive
Treatment Failure. Hypertension 2016, 67, 1085–1092. [CrossRef]

8. Delalic, D.; Jug, J.; Prkacin, I. Arterial Hypertension Following COVID-19: A Retrospective Study of Patients in a Central European
Tertiary Care Center. Acta Clin. Croat. 2022, 61, 23–27. [CrossRef]

9. Zhang, V.; Fisher, M.; Hou, W.; Zhang, L.; Duong, T.Q. Incidence of New-Onset Hypertension Post-COVID-19: Comparison with
Influenza. Hypertension 2023, 80, 2135–2148. [CrossRef]

10. Chen, G.; Li, X.; Gong, Z.; Xia, H.; Wang, Y.; Wang, X.; Huang, Y.; Barajas-Martinez, H.; Hu, D. Hypertension as a sequela in
patients of SARS-CoV-2 infection. PLoS ONE 2021, 16, e0250815. [CrossRef]

https://github.com/pathologydynamics/semnet-2
https://github.com/pathologydynamics/semnet-2
https://doi.org/10.1371/journal.ppat.1008536
https://www.ncbi.nlm.nih.gov/pubmed/32442210
https://doi.org/10.1161/CIRCULATIONAHA.120.046941
https://www.ncbi.nlm.nih.gov/pubmed/32200663
https://doi.org/10.1093/jmcb/mjaa064
https://www.ncbi.nlm.nih.gov/pubmed/33226078
https://doi.org/10.1038/s41371-021-00607-3
https://doi.org/10.3390/genes12071070
https://doi.org/10.1038/s41371-021-00591-8
https://doi.org/10.1161/HYPERTENSIONAHA.116.06587
https://doi.org/10.20471/acc.2022.61.s1.03
https://doi.org/10.1161/HYPERTENSIONAHA.123.21174
https://doi.org/10.1371/journal.pone.0250815


Biology 2023, 12, 1269 26 of 31

11. Wrona, M.; Skrypnik, D. New-Onset Diabetes Mellitus, Hypertension, Dyslipidaemia as Sequelae of COVID-19 Infection-
Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 13280. [CrossRef]

12. Ong, W.Y.; Satish, R.L.; Herr, D.R. ACE2, Circumventricular Organs and the Hypothalamus, and COVID-19. Neuromol. Med. 2022,
24, 363–373. [CrossRef] [PubMed]

13. Tsampasian, V.; Corballis, N.; Vassiliou, V.S. Renin-Angiotensin-Aldosterone Inhibitors and COVID-19 Infection. Curr. Hypertens.
Rep. 2022, 24, 425–433. [CrossRef]

14. Fountain, J.H.; Kaur, J.; Lappin, S.L. Physiology, Renin Angiotensin System; StatPearls: Treasure Island, FL, USA, 2023.
15. Grant, S.N.; Lester, H.A. Regulation of epithelial sodium channel activity by SARS-CoV-1 and SARS-CoV-2 proteins. Biophys. J.

2021, 120, 2805–2813. [CrossRef]
16. Swanson, D.R. Fish oil, Raynaud’s syndrome, and undiscovered public knowledge. Perspect. Biol. Med. 1986, 30, 7–18. [CrossRef]
17. Al-Hussaini, I.; Nakajima An, D.; Lee, A.J.B.; Bi, S.; Mitchell, C.S. CCS Explorer: Relevance Prediction, Extractive Summarization,

and Named Entity Recognition from Clinical Cohort Studies. In Proceedings of the 2022 IEEE International Conference on Big
Data (Big Data), Osaka, Japan, 17–20 December 2022.

18. Kirkpatrick, A.; Onyeze, C.; Kartchner, D.; Allegri, S.; An, D.N.; McCoy, K.; Davalbhakta, E.; Mitchell, C.S. Optimizations for
Computing Relatedness in Biomedical Heterogeneous Information Networks: SemNet 2.0. Big Data Cogn. Comput. 2022, 6, 27.
[CrossRef]

19. Sedler, A.R.; Mitchell, C.S. SemNet: Using Local Features to Navigate the Biomedical Concept Graph. Front. Bioeng Biotechnol.
2019, 7, 156. [CrossRef]

20. McCoy, K.; Gudapati, S.; He, L.; Horlander, E.; Kartchner, D.; Kulkarni, S.; Mehra, N.; Prakash, J.; Thenot, H.; Vanga, S.V.; et al.
Biomedical Text Link Prediction for Drug Discovery: A Case Study with COVID-19. Pharmaceutics 2021, 13, 794. [CrossRef]

21. Pires, C. A Systematic Review on the Contribution of Artificial Intelligence in the Development of Medicines for COVID-2019.
J. Pers. Med. 2021, 11, 926. [CrossRef]

22. Mehra, N.; Varmeziar, A.; Chen, X.; Kronick, O.; Fisher, R.; Kota, V.; Mitchell, C.S. Cross-Domain Text Mining to Predict Adverse
Events from Tyrosine Kinase Inhibitors for Chronic Myeloid Leukemia. Cancers 2022, 14, 4686. [CrossRef]

23. Tandra, G.; Yoone, A.; Mathew, R.; Wang, M.; Hales, C.M.; Mitchell, C.S. Literature-Based Discovery Predicts Antihistamines Are
a Promising Repurposed Adjuvant Therapy for Parkinson & rsquo’s Disease. Int. J. Mol. Sci. 2023, 24, 12339. [PubMed]

24. Xiao, Y.; Zhang, B.; Cloyd, J.M.; Alaimo, L.; Xu, G.; Du, S.; Mao, Y.; Pawlik, T.M. Novel Drug Candidate Prediction for Intrahepatic
Cholangiocarcinoma via Hub Gene Network Analysis and Connectivity Mapping. Cancers 2022, 14, 3284. [CrossRef] [PubMed]

25. Henry, S.; McInnes, B.T. Literature Based Discovery: Models, methods, and trends. J. Biomed. Inform. 2017, 74, 20–32. [CrossRef]
26. Pimenta, E.; Calhoun, D.A. Treatment of resistant hypertension. J. Hypertens. 2010, 28, 2194–2195. [CrossRef]
27. Judd, E.K.; Calhoun, D.A.; Warnock, D.G. Pathophysiology and treatment of resistant hypertension: The role of aldosterone and

amiloride-sensitive sodium channels. Semin. Nephrol. 2014, 34, 532–539. [CrossRef]
28. Gorini, S.; Kim, S.K.; Infante, M.; Mammi, C.; La Vignera, S.; Fabbri, A.; Jaffe, I.Z.; Caprio, M. Role of Aldosterone and

Mineralocorticoid Receptor in Cardiovascular Aging. Front. Endocrinol. 2019, 10, 584. [CrossRef]
29. Gomez-Sanchez, C.E.; Gomez-Sanchez, E.P. The Mineralocorticoid Receptor and the Heart. Endocrinology 2021, 162, bqab131.

[CrossRef]
30. Kim, J.; Miyazaki, K.; Shah, P.; Kozai, L.; Kewcharoen, J. Association between Mineralocorticoid Receptor Antagonist and

Mortality in SARS-CoV-2 Patients: A Systematic Review and Meta-Analysis. Healthcare 2022, 10, 645. [CrossRef]
31. Shimosawa, T. Salt, the renin-angiotensin-aldosterone system and resistant hypertension. Hypertens. Res. 2013, 36, 657–660.

[CrossRef]
32. Zaika, O.; Mamenko, M.; Staruschenko, A.; Pochynyuk, O. Direct activation of ENaC by angiotensin II: Recent advances and new

insights. Curr. Hypertens. Rep. 2013, 15, 17–24. [CrossRef]
33. Kawai, T.; Forrester, S.J.; O’Brien, S.; Baggett, A.; Rizzo, V.; Eguchi, S. AT1 receptor signaling pathways in the cardiovascular

system. Pharmacol. Res. 2017, 125, 4–13. [CrossRef] [PubMed]
34. Rothlin, R.P.; Duarte, M.; Pelorosso, F.G.; Nicolosi, L.; Salgado, M.V.; Vetulli, H.M.; Spitzer, E. Angiotensin Receptor Blockers

for COVID-19: Pathophysiological and Pharmacological Considerations About Ongoing and Future Prospective Clinical Trials.
Front. Pharmacol. 2021, 12, 603736. [CrossRef] [PubMed]

35. Quadri, R.; Sertic, S.; Muzi-Falconi, M. Roles and regulation of Haspin kinase and its impact on carcinogenesis. Cell Signal 2022,
93, 110303. [CrossRef] [PubMed]

36. Post, G.R.; Swiderski, C.; Waldrop, B.A.; Salty, L.; Glembotski, C.C.; Wolthuis, R.M.; Mochizuki, N. Guanine nucleotide exchange
factor-like factor (Rlf) induces gene expression and potentiates alpha 1-adrenergic receptor-induced transcriptional responses in
neonatal rat ventricular myocytes. J. Biol. Chem. 2002, 277, 15286–15292. [CrossRef] [PubMed]

37. Scotland, R.L.; Allen, L.; Hennings, L.J.; Post, G.R.; Post, S.R. The ral exchange factor rgl2 promotes cardiomyocyte survival and
inhibits cardiac fibrosis. PLoS ONE 2013, 8, e73599. [CrossRef] [PubMed]

38. Omidvar, N.; Pearn, L.; Burnett, A.K.; Darley, R.L. Ral is both necessary and sufficient for the inhibition of myeloid differentiation
mediated by Ras. Mol. Cell Biol. 2006, 26, 3966–3975. [CrossRef]

39. Fredericks, J.; Ren, R. The role of RAS effectors in BCR/ABL induced chronic myelogenous leukemia. Front. Med. 2013, 7, 452–461.
[CrossRef]

https://doi.org/10.3390/ijerph192013280
https://doi.org/10.1007/s12017-022-08706-1
https://www.ncbi.nlm.nih.gov/pubmed/35451691
https://doi.org/10.1007/s11906-022-01207-3
https://doi.org/10.1016/j.bpj.2021.06.005
https://doi.org/10.1353/pbm.1986.0087
https://doi.org/10.3390/bdcc6010027
https://doi.org/10.3389/fbioe.2019.00156
https://doi.org/10.3390/pharmaceutics13060794
https://doi.org/10.3390/jpm11090926
https://doi.org/10.3390/cancers14194686
https://www.ncbi.nlm.nih.gov/pubmed/37569714
https://doi.org/10.3390/cancers14133284
https://www.ncbi.nlm.nih.gov/pubmed/35805055
https://doi.org/10.1016/j.jbi.2017.08.011
https://doi.org/10.1097/HJH.0b013e32833eafa3
https://doi.org/10.1016/j.semnephrol.2014.08.007
https://doi.org/10.3389/fendo.2019.00584
https://doi.org/10.1210/endocr/bqab131
https://doi.org/10.3390/healthcare10040645
https://doi.org/10.1038/hr.2013.69
https://doi.org/10.1007/s11906-012-0316-1
https://doi.org/10.1016/j.phrs.2017.05.008
https://www.ncbi.nlm.nih.gov/pubmed/28527699
https://doi.org/10.3389/fphar.2021.603736
https://www.ncbi.nlm.nih.gov/pubmed/33854432
https://doi.org/10.1016/j.cellsig.2022.110303
https://www.ncbi.nlm.nih.gov/pubmed/35278668
https://doi.org/10.1074/jbc.M111844200
https://www.ncbi.nlm.nih.gov/pubmed/11847222
https://doi.org/10.1371/journal.pone.0073599
https://www.ncbi.nlm.nih.gov/pubmed/24069211
https://doi.org/10.1128/MCB.26.10.3966-3975.2006
https://doi.org/10.1007/s11684-013-0304-0


Biology 2023, 12, 1269 27 of 31

40. Shin, J.; Ahn, S.H.; Kim, S.H.; Oh, D.J. N-3-oxododecanoyl homoserine lactone exacerbates endothelial cell death by inducing
receptor-interacting protein kinase 1-dependent apoptosis. Am. J. Physiol. Cell Physiol. 2021, 321, C644–C653. [CrossRef]

41. Zhao, G.; Neely, A.M.; Schwarzer, C.; Lu, H.; Whitt, A.G.; Stivers, N.S.; Burlison, J.A.; White, C.; Machen, T.E.; Li, C. N-(3-oxo-acyl)
homoserine lactone inhibits tumor growth independent of Bcl-2 proteins. Oncotarget 2016, 7, 5924–5942. [CrossRef]

42. Dhanaraj, P.; Muthiah, I.; Rozbu, M.R.; Nuzhat, S.; Paulraj, M.S. Computational Studies on T2Rs Agonist-Based Anti-COVID-19
Drug Design. Front. Mol. Biosci. 2021, 8, 637124. [CrossRef]

43. Esam, Z. Protective potential of expectorants against COVID-19. Med. Hypotheses. 2020, 142, 109844. [CrossRef] [PubMed]
44. Suzuki, N.N.; Koizumi, K.; Fukushima, M.; Matsuda, A.; Inagaki, F. Structural basis for the specificity, catalysis, and regulation of

human uridine-cytidine kinase. Structure 2004, 12, 751–764. [CrossRef] [PubMed]
45. Kim, Y.; Wower, J.; Maltseva, N.; Chang, C.; Jedrzejczak, R.; Wilamowski, M.; Kang, S.; Nicolaescu, V.; Randall, G.;

Michalska, K.; et al. Tipiracil binds to uridine site and inhibits Nsp15 endoribonuclease NendoU from SARS-CoV-2. Commun.
Biol. 2021, 4, 193. [CrossRef] [PubMed]

46. Matsumoto, T.; Takayanagi, K.; Katome, T.; Kojima, M.; Taguchi, K.; Kobayashi, T. Extracellular Uridine Nucleotides-Induced
Contractions Were Increased in Femoral Arteries of Spontaneously Hypertensive Rats. Pharmacology 2021, 106, 435–445. [CrossRef]

47. Gertz, B.J.; Haugaard, E.S.; Haugaard, N. Effects of thyroid hormone on UTP content and uridine kinase activity of rat heart and
skeletal muscle. Am. J. Physiol. 1980, 238, E443–E449. [CrossRef]

48. Belosludtseva, N.V.; Starinets, V.S.; Mikheeva, I.B.; Belosludtsev, M.N.; Dubinin, M.V.; Mironova, G.D.; Belosludtsev, K.N.
Effect of Chronic Treatment with Uridine on Cardiac Mitochondrial Dysfunction in the C57BL/6 Mouse Model of High-Fat
Diet-Streptozotocin-Induced Diabetes. Int. J. Mol. Sci. 2022, 23, 10633. [CrossRef] [PubMed]

49. Hsu, J.C.; Sekizawa, S.I.; Tochinai, R.; Kuwahara, M. Chronic stimulation of group II metabotropic glutamate receptors in the
medulla oblongata attenuates hypertension development in spontaneously hypertensive rats. PLoS ONE 2021, 16, e0251495.
[CrossRef]

50. Zhou, J.J.; Pachuau, J.; Li, D.P.; Chen, S.R.; Pan, H.L. Group III metabotropic glutamate receptors regulate hypothalamic
presympathetic neurons through opposing presynaptic and postsynaptic actions in hypertension. Neuropharmacology 2020, 174,
108159. [CrossRef]

51. Felizola, S.J.A.; Nakamura, Y.; Satoh, F.; Morimoto, R.; Kikuchi, K.; Nakamura, T.; Hozawa, A.; Wang, L.; Onodera, Y.; Ise, K.; et al.
Glutamate receptors and the regulation of steroidogenesis in the human adrenal gland: The metabotropic pathway. Mol. Cell
Endocrinol. 2014, 382, 170–177. [CrossRef]

52. Wang, J.; Yang, G.; Wang, X.; Wen, Z.; Shuai, L.; Luo, J.; Wang, C.; Sun, Z.; Liu, R.; Ge, J.; et al. SARS-CoV-2 uses metabotropic
glutamate receptor subtype 2 as an internalization factor to infect cells. Cell Discov. 2021, 7, 119. [CrossRef]

53. Dash, C.; Kulkarni, A.; Dunn, B.; Rao, M. Aspartic peptidase inhibitors: Implications in drug development. Crit. Rev. Biochem.
Mol. Biol. 2003, 38, 89–119. [CrossRef] [PubMed]

54. Savitha, M.N.; Suvilesh, K.N.; Siddesha, J.M.; Milan Gowda, M.D.; Choudhury, M.; Velmurugan, D.; Umashankar, M.;
Vishwanath, B.S. Combinatorial inhibition of Angiotensin converting enzyme, Neutral endopeptidase and Aminopeptidase N by
N-methylated peptides alleviates blood pressure and fibrosis in rat model of dexamethasone-induced hypertension. Peptides
2020, 123, 170180. [CrossRef] [PubMed]

55. Koka, V.; Huang, X.R.; Chung, A.C.; Wang, W.; Truong, L.D.; Lan, H.Y. Angiotensin II up-regulates angiotensin I-converting
enzyme (ACE), but down-regulates ACE2 via the AT1-ERK/p38 MAP kinase pathway. Am. J. Pathol. 2008, 172, 1174–1183.
[CrossRef] [PubMed]

56. Stanevich, O.V.; Fomina, D.S.; Bakulin, I.G.; Galeev, S.I.; Bakin, E.A.; Belash, V.A.; Kulikov, A.N.; Lebedeva, A.A.; Lioznov, D.A.;
Polushin, Y.S.; et al. Ruxolitinib versus dexamethasone in hospitalized adults with COVID-19: Multicenter matched cohort study.
BMC Infect. Dis. 2021, 21, 1277. [CrossRef] [PubMed]

57. Ahmed, M.G.T.; Limmer, A.; Sucker, C.; Fares, K.M.; Mohamed, S.A.; Othman, A.H.; Berger, M.M.; Brenner, T.; Hartmann, M.
Differential Regulation of CD45 Expression on Granulocytes, Lymphocytes, and Monocytes in COVID-19. J. Clin. Med. 2022, 11,
4219. [CrossRef] [PubMed]

58. Olivier, M.; Hsiung, C.A.; Chuang, L.M.; Ho, L.T.; Ting, C.T.; Bustos, V.I.; Lee, T.M.; De Witte, A.; Chen, Y.D.; Olshen, R.; et al.
Single nucleotide polymorphisms in protein tyrosine phosphatase 1beta (PTPN1) are associated with essential hypertension and
obesity. Hum. Mol. Genet. 2004, 13, 1885–1892. [CrossRef] [PubMed]

59. Gu, P.; Jiang, W.; Du, H.; Shao, J.; Lu, B.; Wang, J.; Zou, D. Protein tyrosine phosphatase 1B gene polymorphisms and essential
hypertension: A case-control study in Chinese population. J. Endocrinol. Investig. 2010, 33, 483–488. [CrossRef]

60. Satarker, S.; Tom, A.A.; Shaji, R.A.; Alosious, A.; Luvis, M.; Nampoothiri, M. JAK-STAT Pathway Inhibition and their Implications
in COVID-19 Therapy. Postgrad. Med. 2021, 133, 489–507. [CrossRef]

61. Emadi, A.; Chua, J.V.; Talwani, R.; Bentzen, S.M.; Baddley, J. Safety and Efficacy of Imatinib for Hospitalized Adults with
COVID-19: A structured summary of a study protocol for a randomised controlled trial. Trials 2020, 21, 897. [CrossRef]

62. Savoia, C.; Ebrahimian, T.; He, Y.; Gratton, J.P.; Schiffrin, E.L.; Touyz, R.M. Angiotensin II/AT2 receptor-induced vasodilation in
stroke-prone spontaneously hypertensive rats involves nitric oxide and cGMP-dependent protein kinase. J. Hypertens. 2006, 24,
2417–2422. [CrossRef]

https://doi.org/10.1152/ajpcell.00094.2021
https://doi.org/10.18632/oncotarget.6827
https://doi.org/10.3389/fmolb.2021.637124
https://doi.org/10.1016/j.mehy.2020.109844
https://www.ncbi.nlm.nih.gov/pubmed/32930097
https://doi.org/10.1016/j.str.2004.02.038
https://www.ncbi.nlm.nih.gov/pubmed/15130468
https://doi.org/10.1038/s42003-021-01735-9
https://www.ncbi.nlm.nih.gov/pubmed/33564093
https://doi.org/10.1159/000516893
https://doi.org/10.1152/ajpendo.1980.238.5.E443
https://doi.org/10.3390/ijms231810633
https://www.ncbi.nlm.nih.gov/pubmed/36142532
https://doi.org/10.1371/journal.pone.0251495
https://doi.org/10.1016/j.neuropharm.2020.108159
https://doi.org/10.1016/j.mce.2013.09.025
https://doi.org/10.1038/s41421-021-00357-z
https://doi.org/10.1080/713609213
https://www.ncbi.nlm.nih.gov/pubmed/12749695
https://doi.org/10.1016/j.peptides.2019.170180
https://www.ncbi.nlm.nih.gov/pubmed/31715212
https://doi.org/10.2353/ajpath.2008.070762
https://www.ncbi.nlm.nih.gov/pubmed/18403595
https://doi.org/10.1186/s12879-021-06982-z
https://www.ncbi.nlm.nih.gov/pubmed/34937556
https://doi.org/10.3390/jcm11144219
https://www.ncbi.nlm.nih.gov/pubmed/35887979
https://doi.org/10.1093/hmg/ddh196
https://www.ncbi.nlm.nih.gov/pubmed/15229188
https://doi.org/10.1007/BF03346629
https://doi.org/10.1080/00325481.2020.1855921
https://doi.org/10.1186/s13063-020-04819-9
https://doi.org/10.1097/01.hjh.0000251902.85675.7e


Biology 2023, 12, 1269 28 of 31

63. Patrucco, E.; Domes, K.; Sbroggio, M.; Blaich, A.; Schlossmann, J.; Desch, M.; Rybalkin, S.D.; Beavo, J.A.; Lukowski, R.;
Hofmann, F. Roles of cGMP-dependent protein kinase I (cGKI) and PDE5 in the regulation of Ang II-induced cardiac hypertrophy
and fibrosis. Proc. Natl. Acad. Sci. USA 2014, 111, 12925–12929. [CrossRef] [PubMed]

64. Xu, Z.X.; Smart, D.A.; Rooney, S.A. Glucocorticoid induction of fatty-acid synthase mediates the stimulatory effect of the hormone
on choline-phosphate cytidylyltransferase activity in fetal rat lung. Biochim. Biophys. Acta 1990, 1044, 70–76. [CrossRef] [PubMed]

65. Zhu, J.; Chen, T.; Yang, L.; Li, Z.; Wong, M.M.; Zheng, X.; Pan, X.; Zhang, L.; Yan, H. Regulation of microRNA-155 in atherosclerotic
inflammatory responses by targeting MAP3K10. PLoS ONE 2012, 7, e46551. [CrossRef]

66. Cota-Gomez, A.; Flores, A.C.; Ling, X.F.; Varella-Garcia, M.; Flores, S.C. HIV-1 Tat increases oxidant burden in the lungs of
transgenic mice. Free Radic. Biol. Med. 2011, 51, 1697–1707. [CrossRef]

67. Liu, J.; Ormsby, A.; Oja-Tebbe, N.; Pagano, P.J. Gene transfer of NAD(P)H oxidase inhibitor to the vascular adventitia attenuates
medial smooth muscle hypertrophy. Circ. Res. 2004, 95, 587–594. [CrossRef]

68. Huang, X.; An, Y.; Li, X.; Wang, D.; Tan, H.; Lei, J. Genetic variants in DICER1, DROSHA, RAN, and XPO5 genes and risk of
pregnancy-induced hypertension. Pregnancy Hypertens. 2019, 16, 161–166. [CrossRef] [PubMed]

69. Martins, E.; Cardoso, J.S.; Abreu-Lima, C. Familial dilated cardiomyopathy. Rev. Port. Cardiol. 2002, 21, 1487–1503.
70. Hart, A.W.; Morgan, J.E.; Schneider, J.; West, K.; McKie, L.; Bhattacharya, S.; Jackson, I.J.; Cross, S.H. Cardiac malformations and

midline skeletal defects in mice lacking filamin A. Hum. Mol. Genet. 2006, 15, 2457–2467. [CrossRef]
71. Ducker, C.; Shaw, P.E. USP17-mediated de-ubiquitination and cancer: Clients cluster around the cell cycle. Int. J. Biochem. Cell

Biol. 2021, 130, 105886. [CrossRef]
72. Lafarga, M.; Hervas, J.P. Intranuclear inclusions in pericytes of the hypothalamus of the rat. Cell Tissue Res. 1978, 193, 315–322.

[CrossRef]
73. Poirier, E.Z.; Buck, M.D.; Chakravarty, P.; Carvalho, J.; Frederico, B.; Cardoso, A.; Healy, L.; Ulferts, R.; Beale, R.; Reis e Sousa, C.

An isoform of Dicer protects mammalian stem cells against multiple RNA viruses. Science 2021, 373, 231–236. [CrossRef]
74. Ganong, W.F. Circumventricular organs: Definition and role in the regulation of endocrine and autonomic function. Clin. Exp.

Pharmacol. Physiol. 2000, 27, 422–427. [CrossRef]
75. Melo, M.A.; Borges, L.P.; Salvatori, R.; Souza, D.R.V.; Santos-Junior, H.T.; de Neto, J.M.R.; Campos, V.C.; Santos, A.A.; Oliveira,

C.R.P.; da Invencao, G.B.; et al. Individuals with isolated congenital GH deficiency due to a GHRH receptor gene mutation appear
to cope better with SARS-CoV-2 infection than controls. Endocrine 2021, 72, 349–355. [CrossRef]

76. Elkarow, M.H.; Hamdy, A. A Suggested Role of Human Growth Hormone in Control of the COVID-19 Pandemic. Front. Endocrinol.
2020, 11, 569633. [CrossRef]

77. Cen, L.P.; Ng, T.K.; Chu, W.K.; Pang, C.P. Growth hormone-releasing hormone receptor signaling in experimental ocular
inflammation and neuroprotection. Neural. Regen. Res. 2022, 17, 2643–2648. [CrossRef]

78. Singh, M.; Mukhopadhyay, K. Alpha-melanocyte stimulating hormone: An emerging anti-inflammatory antimicrobial peptide.
Biomed. Res. Int. 2014, 2014, 874610. [CrossRef]

79. Humphreys, M.H. Cardiovascular and renal actions of melanocyte-stimulating hormone peptides. Curr. Opin. Nephrol. Hypertens.
2007, 16, 32–38. [CrossRef]

80. Baltatzi, M.; Hatzitolios, A.; Tziomalos, K.; Iliadis, F.; Zamboulis, C. Neuropeptide Y and alpha-melanocyte-stimulating hormone:
Interaction in obesity and possible role in the development of hypertension. Int. J. Clin. Pract. 2008, 62, 1432–1440. [CrossRef]

81. Mela, V.; Diaz, F.; Gertler, A.; Solomon, G.; Argente, J.; Viveros, M.P.; Chowen, J.A. Neonatal treatment with a pegylated leptin
antagonist has a sexually dimorphic effect on hypothalamic trophic factors and neuropeptide levels. J. Neuroendocr. 2012, 24,
756–765. [CrossRef]

82. Obradovic, M.; Sudar-Milovanovic, E.; Soskic, S.; Essack, M.; Arya, S.; Stewart, A.J.; Gojobori, T.; Isenovic, E.R. Leptin and
Obesity: Role and Clinical Implication. Front. Endocrinol. 2021, 12, 585887. [CrossRef]

83. Li, C.H.; Chung, D. Isolation and structure of an untriakontapeptide with opiate activity from camel pituitary glands. Proc. Natl.
Acad. Sci. USA 1976, 73, 1145–1148. [CrossRef]

84. Pal, R. COVID-19, hypothalamo-pituitary-adrenal axis and clinical implications. Endocrine 2020, 68, 251–252. [CrossRef]
85. Laferrere, B.; Abraham, C.; Russell, C.D.; Bowers, C.Y. Growth hormone releasing peptide-2 (GHRP-2), like ghrelin, increases

food intake in healthy men. J. Clin. Endocrinol. Metab. 2005, 90, 611–614. [CrossRef]
86. Gonen, M.S.; De Bellis, A.; Durcan, E.; Bellastella, G.; Cirillo, P.; Scappaticcio, L.; Longo, M.; Bircan, B.E.; Sahin, S.; Sulu, C.; et al.

Assessment of Neuroendocrine Changes and Hypothalamo-Pituitary Autoimmunity in Patients with COVID-19. Horm. Metab.
Res. 2022, 54, 153–161. [CrossRef]

87. Lonati, C.; Gatti, S.; Catania, A. Activation of Melanocortin Receptors as a Potential Strategy to Reduce Local and Systemic
Reactions Induced by Respiratory Viruses. Front. Endocrinol. 2020, 11, 569241. [CrossRef]

88. Sen, A. Repurposing prolactin as a promising immunomodulator for the treatment of COVID-19: Are common Antiemetics the
wonder drug to fight coronavirus? Med. Hypotheses. 2020, 144, 110208. [CrossRef]

89. Rossetti, C.L.; Cazarin, J.; Hecht, F.; Beltrao, F.E.L.; Ferreira, A.C.F.; Fortunato, R.S.; Ramos, H.E.; de Carvalho, D.P. COVID-19 and
thyroid function: What do we know so far? Front. Endocrinol. 2022, 13, 1041676. [CrossRef]

90. Croce, L.; Gangemi, D.; Ancona, G.; Liboa, F.; Bendotti, G.; Minelli, L.; Chiovato, L. The cytokine storm and thyroid hormone
changes in COVID-19. J. Endocrinol. Investig. 2021, 44, 891–904. [CrossRef]

https://doi.org/10.1073/pnas.1414364111
https://www.ncbi.nlm.nih.gov/pubmed/25139994
https://doi.org/10.1016/0005-2760(90)90220-R
https://www.ncbi.nlm.nih.gov/pubmed/2160286
https://doi.org/10.1371/journal.pone.0046551
https://doi.org/10.1016/j.freeradbiomed.2011.07.023
https://doi.org/10.1161/01.RES.0000142317.88591.e6
https://doi.org/10.1016/j.preghy.2019.04.005
https://www.ncbi.nlm.nih.gov/pubmed/31056154
https://doi.org/10.1093/hmg/ddl168
https://doi.org/10.1016/j.biocel.2020.105886
https://doi.org/10.1007/BF00209043
https://doi.org/10.1126/science.abg2264
https://doi.org/10.1046/j.1440-1681.2000.03259.x
https://doi.org/10.1007/s12020-021-02728-8
https://doi.org/10.3389/fendo.2020.569633
https://doi.org/10.4103/1673-5374.336135
https://doi.org/10.1155/2014/874610
https://doi.org/10.1097/MNH.0b013e3280117fb5
https://doi.org/10.1111/j.1742-1241.2008.01823.x
https://doi.org/10.1111/j.1365-2826.2012.02279.x
https://doi.org/10.3389/fendo.2021.585887
https://doi.org/10.1073/pnas.73.4.1145
https://doi.org/10.1007/s12020-020-02325-1
https://doi.org/10.1210/jc.2004-1719
https://doi.org/10.1055/a-1764-1260
https://doi.org/10.3389/fendo.2020.569241
https://doi.org/10.1016/j.mehy.2020.110208
https://doi.org/10.3389/fendo.2022.1041676
https://doi.org/10.1007/s40618-021-01506-7


Biology 2023, 12, 1269 29 of 31

91. Khoo, B.; Tan, T.; Clarke, S.A.; Mills, E.G.; Patel, B.; Modi, M.; Phylactou, M.; Eng, P.C.; Thurston, L.; Alexander, E.C.; et al.
Thyroid Function Before, During, and After COVID-19. J. Clin. Endocrinol. Metab. 2021, 106, e803–e811. [CrossRef]

92. Gowda, U.S.V.; Shivakumar, S. Poly(-beta-hydroxybutyrate) (PHB) depolymerase PHAZ (Pen) from Penicillium expansum:
Purification, characterization and kinetic studies. 3 Biotech 2015, 5, 901–909. [CrossRef]

93. Ballout, R.A.; Kong, H.; Sampson, M.; Otvos, J.D.; Cox, A.L.; Agbor-Enoh, S.; Remaley, A.T. The NIH Lipo-COVID Study: A Pilot
NMR Investigation of Lipoprotein Subfractions and Other Metabolites in Patients with Severe COVID-19. Biomedicines 2021, 9,
1090. [CrossRef] [PubMed]

94. Okabayashi, Y.; Otsuki, M.; Nakamura, T.; Fujii, M.; Tani, S.; Fujisawa, T.; Koide, M.; Hasegawa, H.; Baba, S. Proglumide
analogues CR 1409 and CR 1392 inhibit cholecystokinin-stimulated insulin release more potently than exocrine secretion from the
isolated perfused rat pancreas. Pancreas 1990, 5, 291–297. [CrossRef] [PubMed]

95. Otsuki, M.; Fujii, M.; Nakamura, T.; Okabayashi, Y.; Tani, S.; Fujisawa, T.; Koide, M.; Baba, S. Effects of a new proglumide
analogue CR 1392 on pancreatic exocrine secretion in the rat. Digestion 1989, 42, 61–69. [CrossRef] [PubMed]

96. Mirabella, S.; Gomez-Paz, S.; Lam, E.; Gonzalez-Mosquera, L.; Fogel, J.; Rubinstein, S. Glucose dysregulation and its association
with COVID-19 mortality and hospital length of stay. Diabetes Metab. Syndr. 2022, 16, 102439. [CrossRef]

97. Ismail, S.I.; Naffa, R.G.; Yousef, A.M.; Ghanim, M.T. Incidence of bcr-abl fusion transcripts in healthy individuals. Mol. Med. Rep.
2014, 9, 1271–1276. [CrossRef]

98. Arbore, D.R.; Galdean, S.M.; Dima, D.; Rus, I.; Kegyes, D.; Ababei, R.G.; Dragancea, D.; Tomai, R.A.; Trifa, A.P.; Tomuleasa, C.
COVID-19 Impact on Chronic Myeloid Leukemia Patients. J. Pers. Med. 2022, 12, 1886. [CrossRef]

99. Waliany, S.; Sainani, K.L.; Park, L.S.; Zhang, C.A.; Srinivas, S.; Witteles, R.M. Increase in Blood Pressure Associated With Tyrosine
Kinase Inhibitors Targeting Vascular Endothelial Growth Factor. JACC CardioOncol. 2019, 1, 24–36. [CrossRef]

100. Meinel, S.; Gekle, M.; Grossmann, C. Mineralocorticoid receptor signaling: Crosstalk with membrane receptors and other
modulators. Steroids 2014, 91, 3–10. [CrossRef]

101. Martinez-Beamonte, R.; Lou-Bonafonte, J.M.; Martinez-Gracia, M.V.; Osada, J. Sphingomyelin in high-density lipoproteins:
Structural role and biological function. Int. J. Mol. Sci. 2013, 14, 7716–7741. [CrossRef]

102. Sun, Z.; Chen, C.; Li, W.; Martinez, D.R.; Drelich, A.; Baek, D.S.; Liu, X.; Mellors, J.W.; Tseng, C.T.; Baric, R.S.; et al. Potent
neutralization of SARS-CoV-2 by human antibody heavy-chain variable domains isolated from a large library with a new stable
scaffold. MAbs 2020, 12, 1778435. [CrossRef]

103. Gomez-Lopez, N.; Romero, R.; Escobar, M.F.; Carvajal, J.A.; Echavarria, M.P.; Albornoz, L.L.; Nasner, D.; Miller, D.; Gallo, D.M.;
Galaz, J.; et al. Pregnancy-specific responses to COVID-19 revealed by high-throughput proteomics of human plasma. Commun.
Med. 2023, 3, 48. [CrossRef]

104. Cobb, J.A.; Bjergbaek, L.; Gasser, S.M. RecQ helicases: At the heart of genetic stability. FEBS Lett. 2002, 529, 43–48. [CrossRef]
[PubMed]

105. Pitsillou, E.; Liang, J.; Hung, A.; Karagiannis, T.C. The SARS-CoV-2 helicase as a target for antiviral therapy: Identification of
potential small molecule inhibitors by in silico modelling. J. Mol. Graph. Model. 2022, 114, 108193. [CrossRef] [PubMed]

106. Peng, H.; Nogueira, M.L.; Vogel, J.L.; Kristie, T.M. Transcriptional coactivator HCF-1 couples the histone chaperone Asf1b to
HSV-1 DNA replication components. Proc. Natl. Acad. Sci. USA 2010, 107, 2461–2466. [CrossRef] [PubMed]

107. Li, J.; Ebata, A.; Dong, Y.; Rizki, G.; Iwata, T.; Lee, S.S. Caenorhabditis elegans HCF-1 functions in longevity maintenance as a
DAF-16 regulator. PLoS Biol. 2008, 6, e233. [CrossRef]

108. Vogel, J.L.; Kristie, T.M. The dynamics of HCF-1 modulation of herpes simplex virus chromatin during initiation of infection.
Viruses 2013, 5, 1272–1291. [CrossRef]

109. Chen, F.; Zhu, S.; Kang, R.; Tang, D.; Liu, J. ATP6V0D1 promotes alkaliptosis by blocking STAT3-mediated lysosomal pH
homeostasis. Cell Rep. 2023, 42, 111911. [CrossRef]

110. Tseng, Y.H.; Chang, C.C.; Lin, K.H. Thyroid hormone upregulates LAMP2 expression and lysosome activity. Biochem. Biophys.
Res. Commun. 2023, 662, 66–75. [CrossRef]

111. Avari, P.; Eng, P.C.; Hu, M.; Chen, R.; Popovic, N.; Polychronakos, C.; Spalding, D.; Rutter, G.A.; Oliver, N.; Wernig, F. A Novel
Somatic Mutation Implicates ATP6V0D1 in Proinsulin Processing. J. Endocr. Soc. 2023, 7, bvac196. [CrossRef]

112. Hou, Y.; Wang, T.; Ding, Y.; Yu, T.; Cui, Y.; Nie, H. Expression profiles of respiratory V-ATPase and calprotectin in SARS-CoV-2
infection. Cell Death Discov. 2022, 8, 362. [CrossRef]

113. Stille, G.; Michaelis, W. Imipramine demethylation and norepinephrine storage in brain. Eur. J. Pharmacol. 1970, 10, 355–359.
[CrossRef] [PubMed]

114. Armando, I.; Villar, V.A.; Jose, P.A. Dopamine and renal function and blood pressure regulation. Compr. Physiol. 2011, 1, 1075–1117.
[CrossRef] [PubMed]

115. Nakhaee, H.; Zangiabadian, M.; Bayati, R.; Rahmanian, M.; Ghaffari Jolfayi, A.; Rakhshanderou, S. The effect of antidepressants
on the severity of COVID-19 in hospitalized patients: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0267423.
[CrossRef]

116. Shen, J.; Wu, Q.; Liang, T.; Zhang, J.; Bai, J.; Yuan, M.; Shen, P. TRIM40 inhibits IgA1-induced proliferation of glomerular mesangial
cells by inactivating NLRP3 inflammasome through ubiquitination. Mol. Immunol. 2021, 140, 225–232. [CrossRef] [PubMed]

117. Jia, X.; Zhao, C.; Zhao, W. Emerging Roles of MHC Class I Region-Encoded E3 Ubiquitin Ligases in Innate Immunity. Front.
Immunol. 2021, 12, 687102. [CrossRef] [PubMed]

https://doi.org/10.1210/clinem/dgaa830
https://doi.org/10.1007/s13205-015-0287-4
https://doi.org/10.3390/biomedicines9091090
https://www.ncbi.nlm.nih.gov/pubmed/34572275
https://doi.org/10.1097/00006676-199005000-00008
https://www.ncbi.nlm.nih.gov/pubmed/2188254
https://doi.org/10.1159/000199827
https://www.ncbi.nlm.nih.gov/pubmed/2475379
https://doi.org/10.1016/j.dsx.2022.102439
https://doi.org/10.3892/mmr.2014.1951
https://doi.org/10.3390/jpm12111886
https://doi.org/10.1016/j.jaccao.2019.08.012
https://doi.org/10.1016/j.steroids.2014.05.017
https://doi.org/10.3390/ijms14047716
https://doi.org/10.1080/19420862.2020.1778435
https://doi.org/10.1038/s43856-023-00268-y
https://doi.org/10.1016/S0014-5793(02)03269-6
https://www.ncbi.nlm.nih.gov/pubmed/12354611
https://doi.org/10.1016/j.jmgm.2022.108193
https://www.ncbi.nlm.nih.gov/pubmed/35462185
https://doi.org/10.1073/pnas.0911128107
https://www.ncbi.nlm.nih.gov/pubmed/20133788
https://doi.org/10.1371/journal.pbio.0060233
https://doi.org/10.3390/v5051272
https://doi.org/10.1016/j.celrep.2022.111911
https://doi.org/10.1016/j.bbrc.2023.04.061
https://doi.org/10.1210/jendso/bvac196
https://doi.org/10.1038/s41420-022-01158-3
https://doi.org/10.1016/0014-2999(70)90207-4
https://www.ncbi.nlm.nih.gov/pubmed/5422461
https://doi.org/10.1002/cphy.c100032
https://www.ncbi.nlm.nih.gov/pubmed/23733636
https://doi.org/10.1371/journal.pone.0267423
https://doi.org/10.1016/j.molimm.2021.10.012
https://www.ncbi.nlm.nih.gov/pubmed/34763147
https://doi.org/10.3389/fimmu.2021.687102
https://www.ncbi.nlm.nih.gov/pubmed/34177938


Biology 2023, 12, 1269 30 of 31

118. Zhang, X.; Ling, J.; Barcia, G.; Jing, L.; Wu, J.; Barry, B.J.; Mochida, G.H.; Hill, R.S.; Weimer, J.M.; Stein, Q.; et al. Mutations
in QARS, encoding glutaminyl-tRNA synthetase, cause progressive microcephaly, cerebral-cerebellar atrophy, and intractable
seizures. Am. J. Hum. Genet. 2014, 94, 547–558. [CrossRef]

119. Thiele, F.; Cohrs, C.M.; Flor, A.; Lisse, T.S.; Przemeck, G.K.; Horsch, M.; Schrewe, A.; Gailus-Durner, V.; Ivandic, B.;
Katus, H.A.; et al. Cardiopulmonary dysfunction in the Osteogenesis imperfecta mouse model Aga2 and human patients are
caused by bone-independent mechanisms. Hum. Mol. Genet. 2012, 21, 3535–3545. [CrossRef]

120. Alshukairi, A.N.; Doar, H.; Al-Sagheir, A.; Bahasan, M.A.; Sultan, A.A.; Al Hroub, M.K.; Itani, D.; Khalid, I.; Saeedi, M.F.;
Bakhamis, S.; et al. Outcome of COVID19 in Patients with Osteogenesis Imperfecta: A Retrospective Multicenter Study in
Saudi Arabia. Front. Endocrinol. 2021, 12, 800376. [CrossRef]

121. Ringden, O.; Moll, G.; Gustafsson, B.; Sadeghi, B. Mesenchymal Stromal Cells for Enhancing Hematopoietic Engraftment and
Treatment of Graft-Versus-Host Disease, Hemorrhages and Acute Respiratory Distress Syndrome. Front. Immunol. 2022, 13,
839844. [CrossRef]

122. Szlezak, D.; Bronowicka-Adamska, P.; Hutsch, T.; Ufnal, M.; Wrobel, M. Hypertension and Aging Affect Liver Sulfur Metabolism
in Rats. Cells 2021, 10, 1238. [CrossRef]

123. Luo, L.; Liu, D.; Tang, C.; Du, J.; Liu, A.D.; Holmberg, L.; Jin, H. Sulfur dioxide upregulates the inhibited endogenous hydrogen
sulfide pathway in rats with pulmonary hypertension induced by high pulmonary blood flow. Biochem. Biophys. Res. Commun.
2013, 433, 519–525. [CrossRef] [PubMed]

124. Hernandez Carballo, I.; Bakola, M.; Stuckler, D. The impact of air pollution on COVID-19 incidence, severity, and mortality: A
systematic review of studies in Europe and North America. Environ. Res. 2022, 215, 114155. [CrossRef] [PubMed]

125. Fortin, J.; Tian, R.; Zarrabi, I.; Hill, G.; Williams, E.; Sanchez-Duffhues, G.; Thorikay, M.; Ramachandran, P.; Siddaway, R.;
Wong, J.F.; et al. Mutant ACVR1 Arrests Glial Cell Differentiation to Drive Tumorigenesis in Pediatric Gliomas. Cancer Cell 2020,
37, 308–323.e12. [CrossRef] [PubMed]

126. Schmitt-John, T. VPS54 and the wobbler mouse. Front. Neurosci. 2015, 9, 381. [CrossRef] [PubMed]
127. Realegeno, S.; Puschnik, A.S.; Kumar, A.; Goldsmith, C.; Burgado, J.; Sambhara, S.; Olson, V.A.; Carroll, D.; Damon, I.;

Hirata, T.; et al. Monkeypox Virus Host Factor Screen Using Haploid Cells Identifies Essential Role of GARP Complex in
Extracellular Virus Formation. J. Virol. 2017, 91, 10–1128. [CrossRef]

128. Meng, L.B.; Shan, M.J.; Qiu, Y.; Qi, R.; Yu, Z.M.; Guo, P.; Di, C.Y.; Gong, T. TPM2 as a potential predictive biomarker for
atherosclerosis. Aging 2019, 11, 6960–6982. [CrossRef]

129. Pan, Y.; Zhang, J.; Li, J.; Zhao, W. Identification and Validation of Immune Markers in Coronary Heart Disease. Comput. Math.
Methods Med. 2022, 2022, 2877679. [CrossRef]

130. Maiese, A.; Manetti, A.C.; La Russa, R.; Di Paolo, M.; Turillazzi, E.; Frati, P.; Fineschi, V. Autopsy findings in COVID-19-related
deaths: A literature review. Forensic Sci. Med. Pathol. 2021, 17, 279–296. [CrossRef]

131. Moll, T.; Odon, V.; Harvey, C.; Collins, M.O.; Peden, A.; Franklin, J.; Graves, E.; Marshall, J.N.G.; Souza, C.D.S.; Zhang, S.; et al.
Low expression of EXOSC2 protects against clinical COVID-19 and impedes SARS-CoV-2 replication. bioRxiv 2022. [CrossRef]

132. Calame, D.G.; Herman, I.; Fatih, J.M.; Du, H.; Akay, G.; Jhangiani, S.N.; Coban-Akdemir, Z.; Milewicz, D.M.; Gibbs, R.A.;
Posey, J.E.; et al. Risk of sudden cardiac death in EXOSC5-related disease. Am. J. Med. Genet. A 2021, 185, 2532–2540. [CrossRef]

133. Sato, T.; Uchiumi, T.; Arakawa, M.; Kominami, R. Serological association of lupus autoantibodies to a limited functional domain
of 28S ribosomal RNA and to the ribosomal proteins bound to the domain. Clin. Exp. Immunol. 1994, 98, 35–39. [CrossRef]
[PubMed]

134. Ramachandran, L.; Dontaraju, V.S.; Troyer, J.; Sahota, J. New onset systemic lupus erythematosus after COVID-19 infection: A
case report. AME Case Rep. 2022, 6, 14. [CrossRef] [PubMed]

135. Fu, X.L.; Qian, Y.; Jin, X.H.; Yu, H.R.; Du, L.; Wu, H.; Chen, H.L.; Shi, Y.Q. COVID-19 in patients with systemic lupus erythematosus:
A systematic review. Lupus 2022, 31, 684–696. [CrossRef]

136. Raza, H.A.; Tariq, J.; Agarwal, V.; Gupta, L. COVID-19, hydroxychloroquine and sudden cardiac death: Implications for clinical
practice in patients with rheumatic diseases. Rheumatol. Int. 2021, 41, 257–273. [CrossRef] [PubMed]

137. Rajput, A.; Thakur, A.; Mukhopadhyay, A.; Kamboj, S.; Rastogi, A.; Gautam, S.; Jassal, H.; Kumar, M. Prediction of repurposed
drugs for Coronaviruses using artificial intelligence and machine learning. Comput. Struct. Biotechnol. J. 2021, 19, 3133–3148.
[CrossRef] [PubMed]

138. Yano, Y.; Nakazato, M.; Toshinai, K.; Inokuchi, T.; Matsuda, S.; Hidaka, T.; Hayakawa, M.; Kangawa, K.; Shimada, K.; Kario, K.
Circulating des-acyl ghrelin improves cardiovascular risk prediction in older hypertensive patients. Am. J. Hypertens. 2014, 27,
727–733. [CrossRef]

139. Forman, L.J.; Estilow, S.; Hock, C.E. Localization of beta-endorphin in the rat heart and modulation by testosterone. Proc. Soc.
Exp. Biol. Med. 1989, 190, 240–245. [CrossRef]

140. Genazzani, A.R.; Petraglia, F.; Facchinetti, F.; Golinelli, S.; Oltramari, P.; Santoro, V.; Volpe, A. Evidences for a dopamine-regulated
peripheral source of circulating beta-endorphin. J. Clin. Endocrinol. Metab. 1988, 66, 279–282. [CrossRef]

141. Vitolo, E.; Castini, D.; Colombo, A.; Collini, P.; Gueli Alletti, D.; Bianchi, M.; Panerai, A.E. Plasma beta-endorphin and beta-
lipotropin in congestive heart failure in man. Acta Cardiol. 1990, 45, 65–74.

142. Collins, A.B.; Zhao, L.; Zhu, Z.; Givens, N.T.; Bai, Q.; Wakefield, M.R.; Fang, Y. Impact of COVID-19 on Male Fertility. Urology
2022, 164, 33–39. [CrossRef]

https://doi.org/10.1016/j.ajhg.2014.03.003
https://doi.org/10.1093/hmg/dds183
https://doi.org/10.3389/fendo.2021.800376
https://doi.org/10.3389/fimmu.2022.839844
https://doi.org/10.3390/cells10051238
https://doi.org/10.1016/j.bbrc.2013.03.014
https://www.ncbi.nlm.nih.gov/pubmed/23524260
https://doi.org/10.1016/j.envres.2022.114155
https://www.ncbi.nlm.nih.gov/pubmed/36030916
https://doi.org/10.1016/j.ccell.2020.02.002
https://www.ncbi.nlm.nih.gov/pubmed/32142668
https://doi.org/10.3389/fnins.2015.00381
https://www.ncbi.nlm.nih.gov/pubmed/26539077
https://doi.org/10.1128/JVI.00011-17
https://doi.org/10.18632/aging.102231
https://doi.org/10.1155/2022/2877679
https://doi.org/10.1007/s12024-020-00310-8
https://doi.org/10.26508/lsa.202201449
https://doi.org/10.1002/ajmg.a.62352
https://doi.org/10.1111/j.1365-2249.1994.tb06603.x
https://www.ncbi.nlm.nih.gov/pubmed/7923881
https://doi.org/10.21037/acr-21-55
https://www.ncbi.nlm.nih.gov/pubmed/35475008
https://doi.org/10.1177/09612033221093502
https://doi.org/10.1007/s00296-020-04759-2
https://www.ncbi.nlm.nih.gov/pubmed/33386447
https://doi.org/10.1016/j.csbj.2021.05.037
https://www.ncbi.nlm.nih.gov/pubmed/34055238
https://doi.org/10.1093/ajh/hpt232
https://doi.org/10.3181/00379727-190-42855
https://doi.org/10.1210/jcem-66-2-279
https://doi.org/10.1016/j.urology.2021.12.025


Biology 2023, 12, 1269 31 of 31

143. Luay Kamil, A.; Al-Kawaz, U.M.; Al-Essawe, E.M. Gonadotropin and Sex Steroid Hormones in Males with Post COVID-19
Infection. Wiad Lek. 2022, 75, 2222–2225. [CrossRef] [PubMed]

144. Fischer, J.A.; Tobler, P.H.; Henke, H.; Tschopp, F.A. Salmon and human calcitonin-like peptides coexist in the human thyroid and
brain. J. Clin. Endocrinol. Metab. 1983, 57, 1314–1316. [CrossRef] [PubMed]

145. Wells, G.; Chernoff, J.; Gilligan, J.P.; Krause, D.S. Does salmon calcitonin cause cancer? A review and meta-analysis. Osteoporos.
Int. 2016, 27, 13–19. [CrossRef] [PubMed]

146. Najafi, R.; Mamizadeh, N.; Hosseini, S.H.; Roushenas, S.; Bazhdan, L. A challenging case of COVID-19: A COVID-19 positive
adolescent presented with severe diabetic ketoacidosis, resistant hypertension. BMC Endocr. Disord. 2022, 22, 90. [CrossRef]

147. Sun, X.; Tang, S.; Hou, B.; Duan, Z.; Liu, Z.; Li, Y.; He, S.; Wang, Q.; Chang, Q. Overexpression of P-glycoprotein, MRP2, and
CYP3A4 impairs intestinal absorption of octreotide in rats with portal hypertension. BMC Gastroenterol. 2021, 21, 2. [CrossRef]

148. Luty, J.; Hayward, L.; Jackson, M.; Duell, P.B. Severe respiratory failure in a patient with COVID-19 and acromegaly: Rapid
improvement after adding octreotide. BMJ Case Rep. 2021, 14, e243900. [CrossRef]

149. Mittal, L.; Kumari, A.; Srivastava, M.; Singh, M.; Asthana, S. Identification of potential molecules against COVID-19 main protease
through structure-guided virtual screening approach. J. Biomol. Struct. Dyn. 2021, 39, 3662–3680. [CrossRef]

150. Mercuri, V.; D’Amico, T.; Gargiulo, P. Letter to the Editor: “COVID-19 and the endocrine system: Exploring the unexplored”.
Focus on acromegaly. J. Endocrinol. Investig. 2021, 44, 637–638. [CrossRef]

151. Baykan, E.K.; Baykan, A.R.; Utlu, M.; Deve, E.; Yildiz, F.; Birdal, C.; Ozdemir, Y.; Aslan, M.H.; Altinkaynak, K. Growth hormone
level in COVID-19 patients. North. Clin. Istanb. 2022, 9, 470–475. [CrossRef]

152. Zhu, Z.; Zhao, Z.; Chen, X.; Chu, Z.; He, Y.; Tan, Y.; Zhou, J.; Tang, C. Effects of growth hormone/estrogen/androgen on COVID-19-type
proinflammatory responses in normal human lung epithelial BEAS-2B cells. BMC Mol. Cell. Biol. 2022, 23, 42. [CrossRef]

153. Palmeiro, C.R.; Anand, R.; Dardi, I.K.; Balasubramaniyam, N.; Schwarcz, M.D.; Weiss, I.A. Growth hormone and the cardiovascu-
lar system. Cardiol. Rev. 2012, 20, 197–207. [CrossRef] [PubMed]

154. Tanaka, M.; Itoh, H. Hypertension as a Metabolic Disorder and the Novel Role of the Gut. Curr. Hypertens. Rep. 2019, 21, 63.
[CrossRef] [PubMed]

155. Achilonu, I.; Iwuchukwu, E.A.; Achilonu, O.J.; Fernandes, M.A.; Sayed, Y. Targeting the SARS-CoV-2 main protease using
FDA-approved Isavuconazonium, a P2-P3 alpha-ketoamide derivative and Pentagastrin: An in-silico drug discovery approach.
J. Mol. Graph. Model. 2020, 101, 107730. [CrossRef] [PubMed]

156. Petronilho, F.; Danielski, L.G.; Roesler, R.; Schwartsmann, G.; Dal-Pizzol, F. Gastrin-releasing peptide as a molecular target for
inflammatory diseases: An update. Inflamm. Allergy Drug Targets 2013, 12, 172–177. [CrossRef] [PubMed]

157. Clausen, C.L.; Rasmussen, A.K.; Johannsen, T.H.; Hilsted, L.M.; Skakkebaek, N.E.; Szecsi, P.B.; Pedersen, L.; Benfield, T.; Juul, A.
Thyroid function in COVID-19 and the association with cytokine levels and mortality. Endocr. Connect. 2021, 10, 1234–1242.
[CrossRef]

158. Kilicoglu, H.; Shin, D.; Fiszman, M.; Rosemblat, G.; Rindflesch, T.C. SemMedDB: A PubMed-scale repository of biomedical
semantic predications. Bioinformatics 2012, 28, 3158–3160. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.36740/WLek202209208
https://www.ncbi.nlm.nih.gov/pubmed/36378699
https://doi.org/10.1210/jcem-57-6-1314
https://www.ncbi.nlm.nih.gov/pubmed/6630419
https://doi.org/10.1007/s00198-015-3339-z
https://www.ncbi.nlm.nih.gov/pubmed/26438308
https://doi.org/10.1186/s12902-022-00979-8
https://doi.org/10.1186/s12876-020-01532-4
https://doi.org/10.1136/bcr-2021-243900
https://doi.org/10.1080/07391102.2020.1768151
https://doi.org/10.1007/s40618-020-01418-y
https://doi.org/10.14744/nci.2021.90094
https://doi.org/10.1186/s12860-022-00442-5
https://doi.org/10.1097/CRD.0b013e318248a3e1
https://www.ncbi.nlm.nih.gov/pubmed/22314142
https://doi.org/10.1007/s11906-019-0964-5
https://www.ncbi.nlm.nih.gov/pubmed/31236708
https://doi.org/10.1016/j.jmgm.2020.107730
https://www.ncbi.nlm.nih.gov/pubmed/32920239
https://doi.org/10.2174/1871528111312030003
https://www.ncbi.nlm.nih.gov/pubmed/23621446
https://doi.org/10.1530/EC-21-0301
https://doi.org/10.1093/bioinformatics/bts591

	Introduction 
	Materials and Methods 
	Overview of SemNet 2.0 Software for Literature-Based Discovery 
	Hub Network Analysis for Deeper, Cross-Domain Text Mining 
	Analysis Architecture and Simulation Parameters 
	Justification for Target Node and Hub Node Selection 
	Validation of Results and Determination of Themes 

	Results 
	Analysis Metadata 
	Analysis of Intersecting Nodes Related to COVID-19 and Resistant Hypertension 
	Determination of RAAS Receptor Hub Nodes Related to COVID-19 
	Cross-Domain Analysis with RAAS Receptor Hub Nodes and COVID-19 
	Synthesized Biological Themes Comprised by High-Ranking Concepts 

	Discussion 
	Explicit Literature Relationships between Resistant Hypertension and COVID-19 
	Intersection of RAAS Hub Nodes and Relationship to COVID-19 and Resistant Hypertension 
	Explaining Synthesized Biological Themes Comprised by High-Ranking Concepts 
	Study Limitations 
	Technical Limitations 
	Applied Limitations 


	Conclusions 
	References

